Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
- URL: http://arxiv.org/abs/2503.13558v5
- Date: Sat, 26 Apr 2025 17:39:56 GMT
- Title: Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
- Authors: Jingyuan Xue, Longfei Wei, Fang Sheng, Jianfei Zhang,
- Abstract summary: We propose a hybrid survival analysis framework integrating survival data reconstruction, survival model learning, and survival probability estimation.<n>Our approach transforms battery voltage time series into time-to-failure data using path signatures.<n> Experiments conducted on the Toyota battery and NASA battery datasets demonstrate the effectiveness of our approach.
- Score: 1.2603104712715607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Battery degradation significantly impacts the reliability and efficiency of energy storage systems, particularly in electric vehicles and industrial applications. Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for optimizing maintenance schedules, reducing costs, and improving safety. Traditional RUL prediction methods often struggle with nonlinear degradation patterns and uncertainty quantification. To address these challenges, we propose a hybrid survival analysis framework integrating survival data reconstruction, survival model learning, and survival probability estimation. Our approach transforms battery voltage time series into time-to-failure data using path signatures. The multiple Cox-based survival models and machine-learning-based methods, such as DeepHit and MTLR, are learned to predict battery failure-free probabilities over time. Experiments conducted on the Toyota battery and NASA battery datasets demonstrate the effectiveness of our approach, achieving high time-dependent AUC and concordance index (C-Index) while maintaining a low integrated Brier score. The data and source codes for this work are available to the public at https://github.com/thinkxca/rul.
Related papers
- BACE-RUL: A Bi-directional Adversarial Network with Covariate Encoding for Machine Remaining Useful Life Prediction [35.78166369270404]
This paper proposes a Bi-directional Adversa and Health Management (PHM) framework for Remaining Useful Life (RUL) prediction.<n>The proposed model is a general framework and outperforms state-of-the-art methods.<n> experiments on several real-world datasets, including the turbofan aircraft engine dataset, show that the proposed model is a general framework and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-03-14T08:56:40Z) - DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence [21.867940190460704]
The Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage.<n>This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence.
arXiv Detail & Related papers (2025-01-20T15:28:20Z) - Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making [0.0]
We develop machine learning-based models to predict and classify battery RUL.<n>The proposed TLE model consistently outperforms baseline models in RMSE, MAE, and R squared error.<n>XGBoost achieves an impressive 99% classification accuracy, validated through cross-validation techniques.
arXiv Detail & Related papers (2024-09-26T15:08:38Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters.
The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance.
arXiv Detail & Related papers (2024-08-14T15:44:56Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage.
The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation.
This paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a-temporal attention network (ST-MAN)
arXiv Detail & Related papers (2023-10-29T07:32:32Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD) is a fast, performant, and does not require long-term storage of the training data.
We present a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data.
arXiv Detail & Related papers (2023-08-15T11:30:45Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
We present a review of the existing approaches for estimating the remaining useful life of lithium-ion batteries.
We propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries.
arXiv Detail & Related papers (2023-05-17T15:35:31Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
Lithium-ion batteries (LIBs) are key to promoting electrification in the coming decades.
Inadequate understanding of LIB degradation is an important bottleneck that limits battery durability and safety.
Here, we propose hybrid physics-based and data-driven modeling for online diagnosis and prognosis of battery degradation.
arXiv Detail & Related papers (2021-10-25T11:14:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
We propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV.
We show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter.
arXiv Detail & Related papers (2020-09-21T12:35:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.