論文の概要: Multi-Path Long-Term Vessel Trajectories Forecasting with Probabilistic Feature Fusion for Problem Shifting
- arxiv url: http://arxiv.org/abs/2310.18948v6
- Date: Wed, 10 Jul 2024 22:01:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:47:33.448725
- Title: Multi-Path Long-Term Vessel Trajectories Forecasting with Probabilistic Feature Fusion for Problem Shifting
- Title(参考訳): 問題シフトのための確率的特徴融合を用いたマルチパス長期船軌道予測
- Authors: Gabriel Spadon, Jay Kumar, Derek Eden, Josh van Berkel, Tom Foster, Amilcar Soares, Ronan Fablet, Stan Matwin, Ronald Pelot,
- Abstract要約: 本稿では,AIS(Automatic Identification System, 自動識別システム)データに基づく多経路長期船体軌道予測の精度向上を課題とする。
我々は,1~3時間のAISデータを入力として,深層自動エンコーダモデルとフェーズド・フレームワーク・アプローチを開発した。
提案モデルでは, 平均誤差と中央値誤差をそれぞれ11km, 6kmと精度良く予測できることを実証した。
- 参考スコア(独自算出の注目度): 8.970625329763559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of boosting the precision of multi-path long-term vessel trajectory forecasting on engineered sequences of Automatic Identification System (AIS) data using feature fusion for problem shifting. We have developed a deep auto-encoder model and a phased framework approach to predict the next 12 hours of vessel trajectories using 1 to 3 hours of AIS data as input. To this end, we fuse the spatiotemporal features from the AIS messages with probabilistic features engineered from historical AIS data referring to potential routes and destinations. As a result, we reduce the forecasting uncertainty by shifting the problem into a trajectory reconstruction problem. The probabilistic features have an F1-Score of approximately 85% and 75% for the vessel route and destination prediction, respectively. Under such circumstances, we achieved an R2 Score of over 98% with different layer structures and varying feature combinations; the high R2 Score is a natural outcome of the well-defined shipping lanes in the study region. However, our proposal stands out among competing approaches as it demonstrates the capability of complex decision-making during turnings and route selection. Furthermore, we have shown that our model achieves more accurate forecasting with average and median errors of 11km and 6km, respectively, a 25% improvement from the current state-of-the-art approaches. The resulting model from this proposal is deployed as part of a broader Decision Support System to safeguard whales by preventing the risk of vessel-whale collisions under the smartWhales initiative and acting on the Gulf of St. Lawrence in Atlantic Canada.
- Abstract(参考訳): 本稿では,自動識別システム(AIS)データを用いた多経路長期船体軌道予測の精度向上に向けた課題について述べる。
我々は,1~3時間のAISデータを入力として,深層自動エンコーダモデルとフェーズド・フレームワーク・アプローチを開発した。
この目的のために,AIS メッセージの時空間的特徴と,潜在的経路や目的地を示す歴史的AIS データに基づく確率的特徴を融合する。
その結果,軌道再構成問題に遷移することで,予測の不確実性を低減できることがわかった。
確率的特徴は、船のルートと目的地の予測に対して、それぞれ約85%と75%のF1スコアを持つ。
このような状況下では,R2スコアは異なる層構造と異なる特徴の組み合わせで98%以上を達成し,高いR2スコアは研究領域における明確に定義された輸送レーンの自然な結果である。
しかし,提案手法は,旋回や経路選択における複雑な意思決定能力を示すため,競合するアプローチの中でも顕著である。
さらに,本モデルでは, 平均誤差と中央値誤差をそれぞれ11km, 6kmと精度良く予測できることが確認できた。
この提案から得られたモデルは、SmartWhalesイニシアチブの下での船舶と鯨の衝突のリスクを防ぎ、カナダ大西洋岸のセントローレンス湾で行動することによって、クジラを保護するためのより広範な決定支援システムの一部として展開される。
関連論文リスト
- Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
混合モデルとSeq2seqに基づくニューラルネットワークの予測および特徴抽出機能を活用するデータ駆動学習フレームワークを提案する。
このフレームワークでトレーニングした後、学習したモデルは長期予測精度を大幅に向上させることができる。
提案手法の精度と有効性は,予測された軌道と基礎的真実とを比較して評価する。
論文 参考訳(メタデータ) (2024-09-25T21:08:25Z) - WTTFNet: A Weather-Time-Trajectory Fusion Network for Pedestrian Trajectory Prediction in Urban Complex [0.44531072184246007]
ベースラインディープニューラルネットワークアーキテクチャの性能向上を目的として,新しい気象時トラジェクトリ融合ネットワーク(WTTFNet)を提案する。
歩行者施設工学、公共空間開発、技術主導の小売など、多くの用途で利用することができる。
論文 参考訳(メタデータ) (2024-05-29T09:56:54Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
NeurIPS 2022 Traffic4cast チャレンジは、公共に利用可能なスパースループ数データで都市全体の交通状態を予測することを目的としている。
この技術報告は、ETA予測の拡張課題に対して、私たちの2位獲得ソリューションを紹介します。
論文 参考訳(メタデータ) (2022-11-13T22:19:21Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Short-term bus travel time prediction for transfer synchronization with
intelligent uncertainty handling [12.504473943407092]
マルチリンクバスの走行時間問題に適応・拡張した不確実性推定のための2つの新しいアプローチを提案する。
不確実性は、反復的な人工ニューラルネットワークの一部として直接モデル化されるが、2つの根本的に異なるアプローチを用いる。
論文 参考訳(メタデータ) (2021-04-14T12:38:27Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
将来の軌道の不確実性は、(a)エージェントに知られているが、モデルに未知な情報源、例えば長期目標や(b)エージェントとモデルの両方に未知な情報源、例えば他のエージェントの意図や既約乱数不確定性などである。
我々は,長期目標における多モータリティと,経路ポイントや経路における多モータリティによるアレタリック不確実性を通じて,てんかん不確かさをモデル化する。
また,この二分法を実証するために,従来の作業よりも1分間,桁長の予測地平線を有する,新しい長期軌跡予測設定を提案する。
論文 参考訳(メタデータ) (2020-12-02T21:01:29Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。