Roles of Scaling and Instruction Tuning in Language Perception: Model
vs. Human Attention
- URL: http://arxiv.org/abs/2310.19084v1
- Date: Sun, 29 Oct 2023 17:16:40 GMT
- Title: Roles of Scaling and Instruction Tuning in Language Perception: Model
vs. Human Attention
- Authors: Changjiang Gao, Shujian Huang, Jixing Li and Jiajun Chen
- Abstract summary: This work compares the self-attention of several large language models (LLMs) in different sizes to assess the effect of scaling and instruction tuning on language perception.
Results show that scaling enhances the human resemblance and improves the effective attention by reducing the trivial pattern reliance, while instruction tuning does not.
We also find that current LLMs are consistently closer to non-native than native speakers in attention, suggesting a sub-optimal language perception of all models.
- Score: 58.817405319722596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language models (LLMs) have revealed strong abilities to
understand natural language. Since most of them share the same basic structure,
i.e. the transformer block, possible contributors to their success in the
training process are scaling and instruction tuning. However, how these factors
affect the models' language perception is unclear. This work compares the
self-attention of several existing LLMs (LLaMA, Alpaca and Vicuna) in different
sizes (7B, 13B, 30B, 65B), together with eye saccade, an aspect of human
reading attention, to assess the effect of scaling and instruction tuning on
language perception. Results show that scaling enhances the human resemblance
and improves the effective attention by reducing the trivial pattern reliance,
while instruction tuning does not. However, instruction tuning significantly
enhances the models' sensitivity to instructions. We also find that current
LLMs are consistently closer to non-native than native speakers in attention,
suggesting a sub-optimal language perception of all models. Our code and data
used in the analysis is available on GitHub.
Related papers
- SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences.
We show that SpeechAlign can bridge the distribution gap and facilitate continuous self-improvement of the speech language model.
arXiv Detail & Related papers (2024-04-08T15:21:17Z) - Lexicon-Level Contrastive Visual-Grounding Improves Language Modeling [47.7950860342515]
LexiContrastive Grounding (LCG) is a grounded language learning procedure that leverages visual supervision to improve textual representations.
LCG outperforms standard language-only models in learning efficiency.
It improves upon vision-and-language learning procedures including CLIP, GIT, Flamingo, and Vokenization.
arXiv Detail & Related papers (2024-03-21T16:52:01Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension.
But to achieve these results, LMs must be trained in distinctly un-human-like ways.
Do models trained more naturalistically -- with grounded supervision -- exhibit more humanlike language learning?
We investigate this question in the context of word learning, a key sub-task in language acquisition.
arXiv Detail & Related papers (2023-10-20T03:33:36Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning [66.31509106146605]
Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages.
However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data.
We propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages.
arXiv Detail & Related papers (2023-05-23T02:51:34Z) - Counteracts: Testing Stereotypical Representation in Pre-trained
Language Models [4.211128681972148]
We use counterexamples to examine the internal stereotypical knowledge in pre-trained language models (PLMs)
We evaluate 7 PLMs on 9 types of cloze-style prompt with different information and base knowledge.
arXiv Detail & Related papers (2023-01-11T07:52:59Z) - Shapley Head Pruning: Identifying and Removing Interference in
Multilingual Transformers [54.4919139401528]
We show that it is possible to reduce interference by identifying and pruning language-specific parameters.
We show that removing identified attention heads from a fixed model improves performance for a target language on both sentence classification and structural prediction.
arXiv Detail & Related papers (2022-10-11T18:11:37Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
We develop a technique that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images.
"vokenization" is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora.
Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks.
arXiv Detail & Related papers (2020-10-14T02:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.