論文の概要: Dynamic V2X Autonomous Perception from Road-to-Vehicle Vision
- arxiv url: http://arxiv.org/abs/2310.19113v1
- Date: Sun, 29 Oct 2023 19:01:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 14:08:42.543580
- Title: Dynamic V2X Autonomous Perception from Road-to-Vehicle Vision
- Title(参考訳): 道路車間視からの動的V2X自律認識
- Authors: Jiayao Tan, Fan Lyu, Linyan Li, Fuyuan Hu, Tingliang Feng, Fenglei Xu,
Rui Yao
- Abstract要約: 本稿では,道路から車への視界からV2X知覚を構築することを提案し,AR2VP(Adaptive Road-to-Vehicle Perception)法を提案する。
AR2VPは、シーン内とシーン間の両方の変化に取り組むように設計されている。
本研究では,3次元物体検出とセグメンテーションの知覚実験を行い,AR2VPは動的環境における特性帯域トレードオフと適応性の両方に優れることを示した。
- 参考スコア(独自算出の注目度): 14.666587433945363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicle-to-everything (V2X) perception is an innovative technology that
enhances vehicle perception accuracy, thereby elevating the security and
reliability of autonomous systems. However, existing V2X perception methods
focus on static scenes from mainly vehicle-based vision, which is constrained
by sensor capabilities and communication loads. To adapt V2X perception models
to dynamic scenes, we propose to build V2X perception from road-to-vehicle
vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method. In
AR2VP,we leverage roadside units to offer stable, wide-range sensing
capabilities and serve as communication hubs. AR2VP is devised to tackle both
intra-scene and inter-scene changes. For the former, we construct a dynamic
perception representing module, which efficiently integrates vehicle
perceptions, enabling vehicles to capture a more comprehensive range of dynamic
factors within the scene.Moreover, we introduce a road-to-vehicle perception
compensating module, aimed at preserving the maximized roadside unit perception
information in the presence of intra-scene changes.For inter-scene changes, we
implement an experience replay mechanism leveraging the roadside unit's storage
capacity to retain a subset of historical scene data, maintaining model
robustness in response to inter-scene shifts. We conduct perception experiment
on 3D object detection and segmentation, and the results show that AR2VP excels
in both performance-bandwidth trade-offs and adaptability within dynamic
environments.
- Abstract(参考訳): vehicle-to-everything (v2x) 知覚は、車両の知覚精度を高め、自律システムのセキュリティと信頼性を高める革新的な技術である。
しかし,既存のV2X認識手法は,センサ機能や通信負荷に制約される車両による視覚の静的シーンに焦点を当てている。
動的シーンにV2X知覚モデルを適用するために,道路車間視からV2X知覚を構築することを提案する。
AR2VPでは、路面ユニットを活用し、安定した広帯域センシング機能を提供し、通信ハブとして機能する。
AR2VPは、シーン内とシーン間の両方の変化に取り組むように設計されている。
For the former, we construct a dynamic perception representing module, which efficiently integrates vehicle perceptions, enabling vehicles to capture a more comprehensive range of dynamic factors within the scene.Moreover, we introduce a road-to-vehicle perception compensating module, aimed at preserving the maximized roadside unit perception information in the presence of intra-scene changes.For inter-scene changes, we implement an experience replay mechanism leveraging the roadside unit's storage capacity to retain a subset of historical scene data, maintaining model robustness in response to inter-scene shifts.
本研究では,3次元物体検出とセグメンテーションの知覚実験を行い,AR2VPは動的環境における特性帯域トレードオフと適応性の両方に優れることを示した。
関連論文リスト
- Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes [70.08318779492944]
私たちは、より効果的なセグメンテーションのために消滅点(VP)を最初に利用しました。
当社の新しいVSS用ネットワークであるVPSegには,この静的および動的VPプリエントを正確に利用する2つのモジュールが組み込まれています。
論文 参考訳(メタデータ) (2024-01-27T01:01:58Z) - SeaDSC: A video-based unsupervised method for dynamic scene change
detection in unmanned surface vehicles [3.2716252389196288]
本稿では,無人表面車両(USV)の動的シーン変化を検出するためのアプローチについて概説する。
本研究の目的は,海中映像データのダイナミックなシーン,特に高い類似性を示すシーンに顕著な変化を見出すことである。
本研究では,動的シーン変化検出システムにおいて,教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T07:34:01Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle
Cooperative Perception [49.7212681947463]
車両から車両への協調認識システム(V2V)は、自動運転産業に革命をもたらす大きな可能性を秘めている。
V2V4Realは、V2V知覚のための世界初の大規模実世界のマルチモーダルデータセットである。
我々のデータセットは、20KのLiDARフレーム、40KのRGBフレーム、240Kの注釈付き5クラスの3Dバウンディングボックス、HDMapからなる410kmの走行領域をカバーしている。
論文 参考訳(メタデータ) (2023-03-14T02:49:20Z) - V2XP-ASG: Generating Adversarial Scenes for Vehicle-to-Everything
Perception [37.41995438002604]
V2X知覚システムはすぐに大規模に展開される。
現実のデプロイメントに先立って,困難なトラフィックシナリオの下で,パフォーマンスの評価と改善を行なうには,どうすればよいのでしょう?
本稿では,V2XP-ASGのオープンなシーン生成手法を提案する。
論文 参考訳(メタデータ) (2022-09-27T20:34:41Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVTは、BEVマップ予測を協調的に生成できる最初の汎用マルチエージェント認識フレームワークである。
CoBEVTは協調的BEVセマンティックセグメンテーションのための最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-05T17:59:28Z) - VI-IKD: High-Speed Accurate Off-Road Navigation using Learned
Visual-Inertial Inverse Kinodynamics [42.92648945058518]
Visual-Inertial Inverse Kinodynamics (VI-IKD) は、ロボットの前方の地形パッチからの視覚情報を基にした、新しい学習ベースのIKDモデルである。
我々は,VI-IKDにより,最大3.5m/sの速度で様々な地形において,より正確で堅牢なオフロードナビゲーションを可能にすることを示す。
論文 参考訳(メタデータ) (2022-03-30T01:43:15Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
我々は、道路上のエージェント間で情報を融合するために、V2X-ViTという全体論的アテンションモデルを構築した。
V2X-ViTは異質なマルチエージェント自己アテンションとマルチスケールウィンドウ自己アテンションの交互層から構成される。
我々のアプローチを検証するために、我々は大規模なV2X知覚データセットを作成します。
論文 参考訳(メタデータ) (2022-03-20T20:18:25Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
車両間通信(V2V)を用いて、自動運転車の知覚と運動予測性能を向上させる。
複数の車両から受信した情報をインテリジェントに集約することで、異なる視点から同じシーンを観察することができる。
論文 参考訳(メタデータ) (2020-08-17T17:58:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。