Dynamic V2X Autonomous Perception from Road-to-Vehicle Vision
- URL: http://arxiv.org/abs/2310.19113v1
- Date: Sun, 29 Oct 2023 19:01:20 GMT
- Title: Dynamic V2X Autonomous Perception from Road-to-Vehicle Vision
- Authors: Jiayao Tan, Fan Lyu, Linyan Li, Fuyuan Hu, Tingliang Feng, Fenglei Xu,
Rui Yao
- Abstract summary: We propose to build V2X perception from road-to-vehicle vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method.
AR2VP is devised to tackle both intra-scene and inter-scene changes.
We conduct perception experiment on 3D object detection and segmentation, and the results show that AR2VP excels in both performance-bandwidth trade-offs and adaptability within dynamic environments.
- Score: 14.666587433945363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicle-to-everything (V2X) perception is an innovative technology that
enhances vehicle perception accuracy, thereby elevating the security and
reliability of autonomous systems. However, existing V2X perception methods
focus on static scenes from mainly vehicle-based vision, which is constrained
by sensor capabilities and communication loads. To adapt V2X perception models
to dynamic scenes, we propose to build V2X perception from road-to-vehicle
vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method. In
AR2VP,we leverage roadside units to offer stable, wide-range sensing
capabilities and serve as communication hubs. AR2VP is devised to tackle both
intra-scene and inter-scene changes. For the former, we construct a dynamic
perception representing module, which efficiently integrates vehicle
perceptions, enabling vehicles to capture a more comprehensive range of dynamic
factors within the scene.Moreover, we introduce a road-to-vehicle perception
compensating module, aimed at preserving the maximized roadside unit perception
information in the presence of intra-scene changes.For inter-scene changes, we
implement an experience replay mechanism leveraging the roadside unit's storage
capacity to retain a subset of historical scene data, maintaining model
robustness in response to inter-scene shifts. We conduct perception experiment
on 3D object detection and segmentation, and the results show that AR2VP excels
in both performance-bandwidth trade-offs and adaptability within dynamic
environments.
Related papers
- V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models [13.716889927164383]
This paper introduces V2X-VLM, an innovative E2E vehicle-infrastructure cooperative autonomous driving (VICAD) framework with Vehicle-to-Everything (V2X) systems and large vision-language models (VLMs)
V2X-VLM is designed to enhance situational awareness, decision-making, and ultimate trajectory planning by integrating multimodel data from vehicle-mounted cameras, infrastructure sensors, and textual information.
Evaluations on the DAIR-V2X dataset show that V2X-VLM outperforms state-of-the-art cooperative autonomous driving methods.
arXiv Detail & Related papers (2024-08-17T16:42:13Z) - Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes [70.08318779492944]
We are the first to harness vanishing point (VP) priors for more effective segmentation.
Our novel, efficient network for VSS, named VPSeg, incorporates two modules that utilize exactly this pair of static and dynamic VP priors.
arXiv Detail & Related papers (2024-01-27T01:01:58Z) - SeaDSC: A video-based unsupervised method for dynamic scene change
detection in unmanned surface vehicles [3.2716252389196288]
This paper outlines our approach to detect dynamic scene changes in Unmanned Surface Vehicles (USVs)
Our objective is to identify significant changes in the dynamic scenes of maritime video data, particularly those scenes that exhibit a high degree of resemblance.
In our system for dynamic scene change detection, we propose completely unsupervised learning method.
arXiv Detail & Related papers (2023-11-20T07:34:01Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle
Cooperative Perception [49.7212681947463]
Vehicle-to-Vehicle (V2V) cooperative perception system has great potential to revolutionize the autonomous driving industry.
We present V2V4Real, the first large-scale real-world multi-modal dataset for V2V perception.
Our dataset covers a driving area of 410 km, comprising 20K LiDAR frames, 40K RGB frames, 240K annotated 3D bounding boxes for 5 classes, and HDMaps.
arXiv Detail & Related papers (2023-03-14T02:49:20Z) - V2XP-ASG: Generating Adversarial Scenes for Vehicle-to-Everything
Perception [37.41995438002604]
V2X perception systems will soon be deployed at scale.
How can we evaluate and improve its performance under challenging traffic scenarios before the real-world deployment?
We propose the first open adversarial scene generator V2XP-ASG.
arXiv Detail & Related papers (2022-09-27T20:34:41Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVT is the first generic multi-agent perception framework that can cooperatively generate BEV map predictions.
CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation.
arXiv Detail & Related papers (2022-07-05T17:59:28Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
We use vehicle-to-vehicle (V2V) communication to improve the perception and motion forecasting performance of self-driving vehicles.
By intelligently aggregating the information received from multiple nearby vehicles, we can observe the same scene from different viewpoints.
arXiv Detail & Related papers (2020-08-17T17:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.