論文の概要: Investigative Pattern Detection Framework for Counterterrorism
- arxiv url: http://arxiv.org/abs/2310.19211v1
- Date: Mon, 30 Oct 2023 00:45:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 13:48:46.610202
- Title: Investigative Pattern Detection Framework for Counterterrorism
- Title(参考訳): テロ対策のための探索的パターン検出フレームワーク
- Authors: Shashika R. Muramudalige, Benjamin W. K. Hung, Rosanne Libretti, Jytte
Klausen, Anura P. Jayasumana
- Abstract要約: 自動ツールは、アナリストから応答するクエリに関する情報を抽出し、新しい情報を継続的にスキャンし、過去のイベントと統合し、出現する脅威について警告するために必要である。
我々は、調査パターン検出の課題に対処し、対テロ対策のための調査パターン検出フレームワーク(INSPECT)を開発する。
このフレームワークは、行動指標を特定する機械学習技術や、リスクプロファイルやグループを検出するグラフパターンマッチング技術を含む、多数のコンピューティングツールを統合している。
- 参考スコア(独自算出の注目度): 0.09999629695552192
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Law-enforcement investigations aimed at preventing attacks by violent
extremists have become increasingly important for public safety. The problem is
exacerbated by the massive data volumes that need to be scanned to identify
complex behaviors of extremists and groups. Automated tools are required to
extract information to respond queries from analysts, continually scan new
information, integrate them with past events, and then alert about emerging
threats. We address challenges in investigative pattern detection and develop
an Investigative Pattern Detection Framework for Counterterrorism (INSPECT).
The framework integrates numerous computing tools that include machine learning
techniques to identify behavioral indicators and graph pattern matching
techniques to detect risk profiles/groups. INSPECT also automates multiple
tasks for large-scale mining of detailed forensic biographies, forming
knowledge networks, and querying for behavioral indicators and radicalization
trajectories. INSPECT targets human-in-the-loop mode of investigative search
and has been validated and evaluated using an evolving dataset on domestic
jihadism.
- Abstract(参考訳): 暴力的な過激派による攻撃を防ぐための法執行調査は、公衆の安全のためにますます重要になっている。
この問題は、過激派やグループの複雑な行動を特定するためにスキャンする必要がある膨大なデータ量によって悪化する。
アナリストから問い合わせに応答する情報を抽出し、新たな情報を継続的にスキャンし、過去のイベントと統合し、新たな脅威を警告する自動ツールが必要となる。
我々は、調査パターン検出の課題に対処し、対テロ対策のための調査パターン検出フレームワーク(INSPECT)を開発する。
このフレームワークは、行動指標を識別するための機械学習技術や、リスクプロファイル/グループを検出するグラフパターンマッチング技術を含む、多数のコンピューティングツールを統合する。
INSPECTはまた、詳細な法医学的伝記の大規模マイニング、知識ネットワークの形成、行動指標とラジカル化軌跡のクエリのための複数のタスクを自動化する。
INSPECTは調査対象探索のループ・イン・ザ・ループ・モードを目標としており、国内のジハドリズムに関する進化的データセットを用いて検証・評価されている。
関連論文リスト
- Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
既存のデータセットは、しばしば不足しており、必要な多様性と現在のネットワーク環境との整合性が欠如している。
本稿では,これらの課題を克服するための新しい包括的データセットであるTII-SSRC-23を紹介する。
論文 参考訳(メタデータ) (2023-09-14T05:23:36Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2022-12-02T04:40:54Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - RANK: AI-assisted End-to-End Architecture for Detecting Persistent
Attacks in Enterprise Networks [2.294014185517203]
APT(Advanced Persistent Threats)検出のためのエンドツーエンドAI支援アーキテクチャを提案する。
アーキテクチャは、1アラートテンプレートとマージ、2アラートグラフの構築、3アラートグラフをインシデントに分割、4インシデントスコアリングと順序付けの4つの連続したステップで構成されています。
分析対象のデータの3桁の削減,イシデントの革新的な抽出,抽出したインシデントのセキュリティ面でのスコア付けなど,広範な結果が得られた。
論文 参考訳(メタデータ) (2021-01-06T15:59:51Z) - Deep Learning for Insider Threat Detection: Review, Challenges and
Opportunities [22.976960488191505]
高度なディープラーニング技術は、複雑なデータからエンドツーエンドモデルを学ぶための新しいパラダイムを提供する。
既存の研究では、従来の機械学習アルゴリズムと比較して、ディープラーニングモデルはインサイダー脅威検出のパフォーマンスを向上させることが示されている。
インサイダー脅威検出タスクをさらに進めるためのディープラーニングの適用は、ラベル付きデータの欠如やアダプティブアタックなど、いくつかの制限に直面している。
論文 参考訳(メタデータ) (2020-05-25T22:48:01Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。