論文の概要: Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection
- arxiv url: http://arxiv.org/abs/2310.19247v1
- Date: Mon, 30 Oct 2023 03:32:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 21:46:56.737798
- Title: Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection
- Title(参考訳): 不確実性誘導境界学習による社会的事象検出
- Authors: Jiaqian Ren and Hao Peng and Lei Jiang and Zhiwei Liu and Jia Wu and
Zhengtao Yu and Philip S. Yu
- Abstract要約: 本研究では,不均衡なイベント検出タスクのための不確実性誘導型クラス不均衡学習フレームワークを提案する。
我々のモデルは、ほとんど全てのクラス、特に不確実なクラスにおいて、社会イベントの表現と分類タスクを大幅に改善する。
- 参考スコア(独自算出の注目度): 64.4350027428928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world social events typically exhibit a severe class-imbalance
distribution, which makes the trained detection model encounter a serious
generalization challenge. Most studies solve this problem from the frequency
perspective and emphasize the representation or classifier learning for tail
classes. While in our observation, compared to the rarity of classes, the
calibrated uncertainty estimated from well-trained evidential deep learning
networks better reflects model performance. To this end, we propose a novel
uncertainty-guided class imbalance learning framework - UCL$_{SED}$, and its
variant - UCL-EC$_{SED}$, for imbalanced social event detection tasks. We aim
to improve the overall model performance by enhancing model generalization to
those uncertain classes. Considering performance degradation usually comes from
misclassifying samples as their confusing neighboring classes, we focus on
boundary learning in latent space and classifier learning with high-quality
uncertainty estimation. First, we design a novel uncertainty-guided contrastive
learning loss, namely UCL and its variant - UCL-EC, to manipulate
distinguishable representation distribution for imbalanced data. During
training, they force all classes, especially uncertain ones, to adaptively
adjust a clear separable boundary in the feature space. Second, to obtain more
robust and accurate class uncertainty, we combine the results of multi-view
evidential classifiers via the Dempster-Shafer theory under the supervision of
an additional calibration method. We conduct experiments on three severely
imbalanced social event datasets including Events2012\_100, Events2018\_100,
and CrisisLexT\_7. Our model significantly improves social event representation
and classification tasks in almost all classes, especially those uncertain
ones.
- Abstract(参考訳): 現実世界の社会イベントは通常、厳しい階級不均衡の分布を示し、訓練された検出モデルが深刻な一般化の課題に遭遇する。
ほとんどの研究は周波数の観点からこの問題を解決し、テールクラスの表現や分類器学習を強調する。
私たちの観察では、クラスのララリティと比較すると、トレーニングの行き届いた深層学習ネットワークから推定された不確かさは、モデルのパフォーマンスをよりよく反映する。
この目的のために、不均衡なイベント検出タスクに対して、新しい不確実性誘導型クラス不均衡学習フレームワーク - UCL$_{SED}$とその変種 - UCL-EC$_{SED}$を提案する。
モデル一般化をこれらの不確実なクラスに拡張することにより、全体的なモデル性能を向上させることを目指している。
性能劣化は、典型的には、誤分類サンプルを隣り合うクラスとして扱うことから来ており、潜時空間における境界学習と高品質不確実性推定による分類器学習に焦点を当てている。
まず,不均衡データに対する識別可能な表現分布を操作するために,新しい不確実性誘導型コントラスト学習損失,すなわちuclとその変種であるucl-ecを設計した。
訓練中、全てのクラス、特に不確実なクラスは、特徴空間における明確な分離可能な境界を適応的に調整するよう強制する。
第二に, より堅牢で正確なクラス不確実性を得るために, 追加校正法の監督のもと, デンプスター・シェーファー理論を通した多視点証拠分類器の結果を組み合わせる。
event2012\_100, events2018\_100, crisislext\_7の3つの深刻な不均衡なソーシャルイベントデータセットについて実験を行った。
我々のモデルは、ほとんど全てのクラス、特に不確実なクラスにおいて、社会イベントの表現と分類タスクを大幅に改善する。
関連論文リスト
- Covariance-corrected Whitening Alleviates Network Degeneration on Imbalanced Classification [6.197116272789107]
クラス不均衡は画像分類において重要な問題であり、深層認識モデルの性能に大きな影響を及ぼす。
我々は、退化ソリューションを緩和するWhitening-Netと呼ばれる新しいフレームワークを提案する。
極端なクラス不均衡のシナリオでは、バッチ共分散統計は大きな変動を示し、白化操作の収束を妨げる。
論文 参考訳(メタデータ) (2024-08-30T10:49:33Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
CIL(Class-Incremental Learning)は、非定常データから新しいクラスを継続的に認識するためにモデルを訓練する。
CILの大きな課題は、非一様分布を特徴とする実世界のデータに適用する場合である。
この二重不均衡問題により、FC層に偏りのある勾配更新が生じ、CILの過度/過度な適合と破滅的な忘れが引き起こされる。
論文 参考訳(メタデータ) (2024-02-28T18:08:03Z) - Class Uncertainty: A Measure to Mitigate Class Imbalance [0.0]
授業の基数のみを考慮すると、クラス不均衡の原因となるすべての問題をカバーできるわけではない。
トレーニング事例の予測的不確実性の平均値として「クラス不確実性」を提案する。
また,SVCI-20は,クラスが同じ数のトレーニングサンプルを持つが,それらの硬さの点で異なる,新しいデータセットとしてキュレートする。
論文 参考訳(メタデータ) (2023-11-23T16:36:03Z) - Targeted Supervised Contrastive Learning for Long-Tailed Recognition [50.24044608432207]
実世界のデータは、しばしば重いクラス不均衡の長い尾の分布を示す。
教師付きコントラスト学習は性能向上に寄与するが、過去のベースラインは不均衡なデータ分布によってもたらされる不均一さに悩まされている。
我々は,超球面上の特徴分布の均一性を改善するための教師付きコントラスト学習(TSC)を提案する。
論文 参考訳(メタデータ) (2021-11-27T22:40:10Z) - Analyzing Overfitting under Class Imbalance in Neural Networks for Image
Segmentation [19.259574003403998]
画像分割では、ニューラルネットワークは小さな構造物の前景サンプルに過剰に適合する可能性がある。
本研究では,ネットワークの動作を検査することにより,クラス不均衡下でのオーバーフィッティング問題に対する新たな知見を提供する。
論文 参考訳(メタデータ) (2021-02-20T14:57:58Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
一般化ゼロショット学習(GZSL)の目的は、目に見えないクラスと見えないクラスの両方を認識することである。
ほとんどのGZSLメソッドは、通常、見えないクラスの意味情報から視覚表現を合成することを学ぶ。
本論文では,三重項損失を持つ2重変分オートエンコーダを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T05:21:27Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。