論文の概要: Class Uncertainty: A Measure to Mitigate Class Imbalance
- arxiv url: http://arxiv.org/abs/2311.14090v1
- Date: Thu, 23 Nov 2023 16:36:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-27 23:03:35.584594
- Title: Class Uncertainty: A Measure to Mitigate Class Imbalance
- Title(参考訳): クラス不確実性:クラス不均衡の緩和方策
- Authors: Z. S. Baltaci, K. Oksuz, S. Kuzucu, K. Tezoren, B. K. Konar, A. Ozkan,
E. Akbas, S. Kalkan
- Abstract要約: 授業の基数のみを考慮すると、クラス不均衡の原因となるすべての問題をカバーできるわけではない。
トレーニング事例の予測的不確実性の平均値として「クラス不確実性」を提案する。
また,SVCI-20は,クラスが同じ数のトレーニングサンプルを持つが,それらの硬さの点で異なる,新しいデータセットとしてキュレートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-wise characteristics of training examples affect the performance of
deep classifiers. A well-studied example is when the number of training
examples of classes follows a long-tailed distribution, a situation that is
likely to yield sub-optimal performance for under-represented classes. This
class imbalance problem is conventionally addressed by approaches relying on
the class-wise cardinality of training examples, such as data resampling. In
this paper, we demonstrate that considering solely the cardinality of classes
does not cover all issues causing class imbalance. To measure class imbalance,
we propose "Class Uncertainty" as the average predictive uncertainty of the
training examples, and we show that this novel measure captures the differences
across classes better than cardinality. We also curate SVCI-20 as a novel
dataset in which the classes have equal number of training examples but they
differ in terms of their hardness; thereby causing a type of class imbalance
which cannot be addressed by the approaches relying on cardinality. We
incorporate our "Class Uncertainty" measure into a diverse set of ten class
imbalance mitigation methods to demonstrate its effectiveness on long-tailed
datasets as well as on our SVCI-20. Code and datasets will be made available.
- Abstract(参考訳): 訓練例のクラスワイド特性は深層分類器の性能に影響を及ぼす。
良く研究された例は、クラスのトレーニング例の数が長い尾の分布に従うときであり、この状況は、表現不足なクラスに対して最適でないパフォーマンスをもたらす可能性がある。
このクラス不均衡問題は、データ再サンプリングのようなトレーニング例のクラスワイドの濃度に依存するアプローチによって解決される。
本稿では,クラス濃度のみを考慮すれば,クラス不均衡の原因となる問題をすべてカバーできるわけではないことを実証する。
クラス不均衡を測定するために,訓練例の平均予測不確実性として「クラス不確実性」を提案し,この新手法が濃度よりもクラス間の差異を捉えていることを示す。
また, SVCI-20は, クラスが同じ数のトレーニングサンプルを持つが, それらの硬さによって異なる新しいデータセットとしてキュレートし, 基数に依存するアプローチでは対応できないクラス不均衡を生じさせる。
当社の"クラス不確実性"尺度を10種類のクラス不均衡緩和手法に組み込んで,ロングテールデータセットとsvci-20上での有効性を実証した。
コードとデータセットが利用可能になる。
関連論文リスト
- Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
本研究では,不均衡なイベント検出タスクのための不確実性誘導型クラス不均衡学習フレームワークを提案する。
我々のモデルは、ほとんど全てのクラス、特に不確実なクラスにおいて、社会イベントの表現と分類タスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-10-30T03:32:04Z) - Subclass-balancing Contrastive Learning for Long-tailed Recognition [38.31221755013738]
不均衡なクラス分布を持つロングテール認識は、実践的な機械学習アプリケーションで自然に現れる。
そこで我々は,各ヘッドクラスを複数のサブクラスにクラスタリングする,新しいサブクラスバランス・コントラッシブ・ラーニング・アプローチを提案する。
我々は,長期化ベンチマークデータセットの一覧からSBCLを評価し,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-06-28T05:08:43Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:02:42Z) - Mining Minority-class Examples With Uncertainty Estimates [102.814407678425]
現実世界では、オブジェクトの発生頻度は自然にスキューされ、長い尾のクラス分布を形成する。
これらの課題を克服する効果的な、しかし簡単なアプローチを提案する。
我々のフレームワークは、抑制されたテールクラスのアクティベーションを強化し、その後、1クラスのデータ中心アプローチを使用して、テールクラスの例を効果的に識別する。
論文 参考訳(メタデータ) (2021-12-15T02:05:02Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
最適分類性能は、これまで形式化されていなかったクラス不均衡の特定の性質に依存することを示す。
具体的には、一様クラス不均衡と呼ばれる新しいクラス不均衡のサブタイプを提案する。
これらの結果は、不均衡二項分類に対する最初の有意義な有限サンプル統計理論のいくつかを提供する。
論文 参考訳(メタデータ) (2021-07-05T03:55:43Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
本稿では,損失/モデル/最適化非依存のリスク最小化フレームワークを提案する。
提案手法は, 与えられた信頼度が高ノイズであっても, 簡易な修正でベイズ整合性を示す。
論文 参考訳(メタデータ) (2021-06-16T15:38:13Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - Intra-Class Uncertainty Loss Function for Classification [6.523198497365588]
特にアンバランスクラスを含むデータセットでは、クラス内の不確実性/可変性は考慮されない。
本フレームワークでは,各クラスの深いネットワークによって抽出された特徴を,独立なガウス分布によって特徴付ける。
提案手法は,より優れたクラス表現を学習することで,分類性能の向上を示す。
論文 参考訳(メタデータ) (2021-04-12T09:02:41Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
不均衡なデータセットのクラス分布スキューは、多数派クラスに対する予測バイアスのあるモデルにつながる可能性がある。
本稿では,不均衡なデータ分類のための簡易かつ汎用的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-12T19:47:09Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。