論文の概要: Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection
- arxiv url: http://arxiv.org/abs/2310.19304v1
- Date: Mon, 30 Oct 2023 06:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 21:22:46.282651
- Title: Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection
- Title(参考訳): 財務異常検出のための縦・水平分割データによるプライバシー保護フェデレーション学習
- Authors: Swanand Ravindra Kadhe, Heiko Ludwig, Nathalie Baracaldo, Alan King,
Yi Zhou, Keith Houck, Ambrish Rawat, Mark Purcell, Naoise Holohan, Mikio
Takeuchi, Ryo Kawahara, Nir Drucker, Hayim Shaul, Eyal Kushnir, Omri Soceanu
- Abstract要約: 実世界の金融異常検出シナリオでは、データは垂直と水平の両方に分割される。
我々のソリューションは、完全同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、微分プライバシー(DP)を組み合わせる。
私たちのソリューションは、米国プライバシ・エンハンシング・テクノロジーズ(PET)賞チャレンジの第1フェーズで2位を獲得しました。
- 参考スコア(独自算出の注目度): 11.167661320589488
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The effective detection of evidence of financial anomalies requires
collaboration among multiple entities who own a diverse set of data, such as a
payment network system (PNS) and its partner banks. Trust among these financial
institutions is limited by regulation and competition. Federated learning (FL)
enables entities to collaboratively train a model when data is either
vertically or horizontally partitioned across the entities. However, in
real-world financial anomaly detection scenarios, the data is partitioned both
vertically and horizontally and hence it is not possible to use existing FL
approaches in a plug-and-play manner.
Our novel solution, PV4FAD, combines fully homomorphic encryption (HE),
secure multi-party computation (SMPC), differential privacy (DP), and
randomization techniques to balance privacy and accuracy during training and to
prevent inference threats at model deployment time. Our solution provides input
privacy through HE and SMPC, and output privacy against inference time attacks
through DP. Specifically, we show that, in the honest-but-curious threat model,
banks do not learn any sensitive features about PNS transactions, and the PNS
does not learn any information about the banks' dataset but only learns
prediction labels. We also develop and analyze a DP mechanism to protect output
privacy during inference. Our solution generates high-utility models by
significantly reducing the per-bank noise level while satisfying distributed
DP. To ensure high accuracy, our approach produces an ensemble model, in
particular, a random forest. This enables us to take advantage of the
well-known properties of ensembles to reduce variance and increase accuracy.
Our solution won second prize in the first phase of the U.S. Privacy Enhancing
Technologies (PETs) Prize Challenge.
- Abstract(参考訳): 金融異常の証拠を効果的に検出するには、支払いネットワークシステム(PNS)やパートナー銀行など、多様なデータを所有している複数のエンティティ間の協調が必要である。
これらの金融機関間の信頼は規制と競争によって制限される。
フェデレートラーニング(FL)は、データを垂直または水平に分割する場合に、エンティティが協調的にモデルをトレーニングすることを可能にする。
しかし、実世界の金融異常検出シナリオでは、データは上下に分割されるため、既存のFLアプローチをプラグ・アンド・プレイで使用することはできない。
我々の新しいソリューションであるPV4FADは、完全同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、差分プライバシ(DP)、ランダム化技術を組み合わせて、トレーニング中のプライバシと精度をバランスさせ、モデル展開時の推論脅威を防止する。
我々のソリューションは、HEおよびSMPCを介して入力プライバシを提供し、DPを介して推測時間攻撃に対するプライバシを出力する。
具体的には、正直だが厳密な脅威モデルでは、銀行はpnsトランザクションについてセンシティブな特徴を学ばず、pnsは銀行のデータセットに関する情報を学ばず、予測ラベルしか学ばないことを示す。
また,推論中にアウトプットプライバシを保護するdp機構を開発し,解析する。
提案手法は,分散DPを満足しながら,バンク単位のノイズレベルを著しく低減し,高ユーティリティモデルを生成する。
高い精度を確保するため,本手法では,特にランダムフォレストをアンサンブルモデルとして作成する。
これにより,アンサンブルのよく知られた特性を利用して分散を低減し,精度を向上させることができる。
私たちのソリューションは、米国プライバシ・エンハンシング・テクノロジーズ(PET)賞チャレンジの第1フェーズで2位を獲得しました。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Federated Learning with Sparsified Model Perturbation: Improving
Accuracy under Client-Level Differential Privacy [27.243322019117144]
フェデレートラーニング(FL)は、分散クライアントが共同で共有統計モデルを学ぶことを可能にする。
トレーニングデータに関するセンシティブな情報は、FLで共有されたモデル更新から推測することができる。
差別化プライバシ(DP)は、これらの攻撃を防御するための最先端技術である。
本稿では,モデル精度を維持しつつ,クライアントレベルのDP保証を実現する新しいFLスキームであるFed-SMPを開発した。
論文 参考訳(メタデータ) (2022-02-15T04:05:42Z) - Differentially Private Federated Learning on Heterogeneous Data [10.431137628048356]
フェデレートラーニング(Federated Learning、FL)は、大規模分散ラーニングのパラダイムである。
i)高度に異質なユーザデータからの効率的なトレーニング、(ii)参加ユーザのプライバシ保護という2つの大きな課題に直面しています。
本稿では,差分プライバシー(DP)制約を取り入れた新しいFL手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T18:23:49Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
フェデレートラーニング(FL)により、分散エージェントは、生データを互いに共有することなく、集中型モデルを共同で学習することができる。
スパーシフィケーションを増幅した新しいFLフレームワークを提案する。
提案手法では,ランダムなスペーシフィケーションと各エージェントの勾配摂動を統合し,プライバシー保証を増幅する。
論文 参考訳(メタデータ) (2020-08-01T20:22:57Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - FedSel: Federated SGD under Local Differential Privacy with Top-k
Dimension Selection [26.54574385850849]
本研究では,LDP下でのフェデレーションSGDのための2段階フレームワークFedSelを提案する。
具体的には,3つの私的次元選択機構を提案し,蓄積手法を適用し,ノイズのある更新で学習プロセスを安定化させる。
また、FedSelのプライバシー、正確性、時間的複雑さも理論的に分析し、最先端のソリューションよりも優れています。
論文 参考訳(メタデータ) (2020-03-24T03:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。