Progressive Neural Network for Multi-Horizon Time Series Forecasting
- URL: http://arxiv.org/abs/2310.19322v2
- Date: Fri, 9 Aug 2024 05:56:49 GMT
- Title: Progressive Neural Network for Multi-Horizon Time Series Forecasting
- Authors: Yang Lin,
- Abstract summary: ProNet is a novel deep learning approach designed for multi-horizon time series forecasting.
Our method involves dividing the forecasting horizon into segments, predicting the most crucial steps in each segment non-autoregressively, and the remaining steps autoregressively.
In comparison to AR models, ProNet showcases remarkable advantages, requiring fewer AR iterations, resulting in faster prediction speed, and mitigating error accumulation.
- Score: 4.911305944028228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce ProNet, an novel deep learning approach designed for multi-horizon time series forecasting, adaptively blending autoregressive (AR) and non-autoregressive (NAR) strategies. Our method involves dividing the forecasting horizon into segments, predicting the most crucial steps in each segment non-autoregressively, and the remaining steps autoregressively. The segmentation process relies on latent variables, which effectively capture the significance of individual time steps through variational inference. In comparison to AR models, ProNet showcases remarkable advantages, requiring fewer AR iterations, resulting in faster prediction speed, and mitigating error accumulation. On the other hand, when compared to NAR models, ProNet takes into account the interdependency of predictions in the output space, leading to improved forecasting accuracy. Our comprehensive evaluation, encompassing four large datasets, and an ablation study, demonstrate the effectiveness of ProNet, highlighting its superior performance in terms of accuracy and prediction speed, outperforming state-of-the-art AR and NAR forecasting models.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Evaluating the effectiveness of predicting covariates in LSTM Networks for Time Series Forecasting [0.0]
We introduce a novel approach using seasonal time segments in combination with an RNN architecture, which is both simple and extremely effective over long forecast horizons.
Our findings reveal that under certain conditions jointly training covariates with target variables can improve overall performance of the model.
arXiv Detail & Related papers (2024-04-29T09:51:25Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - AMLNet: Adversarial Mutual Learning Neural Network for
Non-AutoRegressive Multi-Horizon Time Series Forecasting [4.911305944028228]
We introduce AMLNet, an innovative NAR model that achieves realistic forecasts through an online Knowledge Distillation approach.
AMLNet harnesses the strengths of both AR and NAR models by training a deep AR decoder and a deep NAR decoder in a collaborative manner.
This knowledge transfer is facilitated through two key mechanisms: 1) outcome-driven KD, which dynamically weights the contribution of KD losses from the teacher models, enabling the shallow NAR decoder to incorporate the ensemble's diversity; and 2) hint-driven KD, which employs adversarial training to extract valuable insights from the model's hidden states for distillation.
arXiv Detail & Related papers (2023-10-30T06:10:00Z) - Confidence-Nets: A Step Towards better Prediction Intervals for
regression Neural Networks on small datasets [0.0]
We propose an ensemble method that attempts to estimate the uncertainty of predictions, increase their accuracy and provide an interval for the expected variation.
The proposed method is tested on various datasets, and a significant improvement in the performance of the neural network model is seen.
arXiv Detail & Related papers (2022-10-31T06:38:40Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text
Generation [59.64193903397301]
Non-autoregressive (NAR) models simultaneously generate multiple outputs in a sequence, which significantly reduces the inference speed at the cost of accuracy drop compared to autoregressive baselines.
We conduct a comparative study of various NAR modeling methods for end-to-end automatic speech recognition (ASR)
The results on various tasks provide interesting findings for developing an understanding of NAR ASR, such as the accuracy-speed trade-off and robustness against long-form utterances.
arXiv Detail & Related papers (2021-10-11T13:05:06Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
We propose Patience-based Early Exit as a plug-and-play technique to improve the efficiency and robustness of a pretrained language model.
Our approach improves inference efficiency as it allows the model to make a prediction with fewer layers.
arXiv Detail & Related papers (2020-06-07T13:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.