Supervised Dynamic Dimension Reduction with Deep Neural Network
- URL: http://arxiv.org/abs/2508.03546v2
- Date: Wed, 06 Aug 2025 02:41:26 GMT
- Title: Supervised Dynamic Dimension Reduction with Deep Neural Network
- Authors: Zhanye Luo, Yuefeng Han, Xiufan Yu,
- Abstract summary: We propose a novel Supervised Deep Dynamic Principal component analysis framework.<n>We construct target-aware predictors by scaling the original predictors in a supervised manner.<n>A principal component analysis is then performed on the target-aware predictors to extract the estimated SDDP factors.
- Score: 3.0040661953201475
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies the problem of dimension reduction, tailored to improving time series forecasting with high-dimensional predictors. We propose a novel Supervised Deep Dynamic Principal component analysis (SDDP) framework that incorporates the target variable and lagged observations into the factor extraction process. Assisted by a temporal neural network, we construct target-aware predictors by scaling the original predictors in a supervised manner, with larger weights assigned to predictors with stronger forecasting power. A principal component analysis is then performed on the target-aware predictors to extract the estimated SDDP factors. This supervised factor extraction not only improves predictive accuracy in the downstream forecasting task but also yields more interpretable and target-specific latent factors. Building upon SDDP, we propose a factor-augmented nonlinear dynamic forecasting model that unifies a broad family of factor-model-based forecasting approaches. To further demonstrate the broader applicability of SDDP, we extend our studies to a more challenging scenario when the predictors are only partially observable. We validate the empirical performance of the proposed method on several real-world public datasets. The results show that our algorithm achieves notable improvements in forecasting accuracy compared to state-of-the-art methods.
Related papers
- Detecting and Pruning Prominent but Detrimental Neurons in Large Language Models [68.57424628540907]
Large language models (LLMs) often develop learned mechanisms specialized to specific datasets.<n>We introduce a fine-tuning approach designed to enhance generalization by identifying and pruning neurons associated with dataset-specific mechanisms.<n>Our method employs Integrated Gradients to quantify each neuron's influence on high-confidence predictions, pinpointing those that disproportionately contribute to dataset-specific performance.
arXiv Detail & Related papers (2025-07-12T08:10:10Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.<n>Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.<n>We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Progressive Neural Network for Multi-Horizon Time Series Forecasting [4.911305944028228]
ProNet is a novel deep learning approach designed for multi-horizon time series forecasting.
Our method involves dividing the forecasting horizon into segments, predicting the most crucial steps in each segment non-autoregressively, and the remaining steps autoregressively.
In comparison to AR models, ProNet showcases remarkable advantages, requiring fewer AR iterations, resulting in faster prediction speed, and mitigating error accumulation.
arXiv Detail & Related papers (2023-10-30T07:46:40Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Finding Islands of Predictability in Action Forecasting [7.215559809521136]
We show that future action sequences are more accurately modeled with variable, rather than one, levels of abstraction.
We propose a combination Bayesian neural network and hierarchical convolutional segmentation model to both accurately predict future actions and optimally select abstraction levels.
arXiv Detail & Related papers (2022-10-13T21:01:16Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
arXiv Detail & Related papers (2021-07-26T14:55:02Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Supervised PCA: A Multiobjective Approach [70.99924195791532]
Methods for supervised principal component analysis (SPCA)
We propose a new method for SPCA that addresses both of these objectives jointly.
Our approach accommodates arbitrary supervised learning losses and, through a statistical reformulation, provides a novel low-rank extension of generalized linear models.
arXiv Detail & Related papers (2020-11-10T18:46:58Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension.
A prediction in the original space is computed by solving a pre-image problem.
In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space.
arXiv Detail & Related papers (2020-07-29T09:32:53Z) - PIVEN: A Deep Neural Network for Prediction Intervals with Specific
Value Prediction [14.635820704895034]
We present PIVEN, a deep neural network for producing both a PI and a value prediction.
Our approach makes no assumptions regarding data distribution within the PI, making its value prediction more effective for various real-world problems.
arXiv Detail & Related papers (2020-06-09T09:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.