VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior
Empowered by Total Generalized Variation
- URL: http://arxiv.org/abs/2310.19477v2
- Date: Fri, 10 Nov 2023 14:26:34 GMT
- Title: VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior
Empowered by Total Generalized Variation
- Authors: Tingting Wu, Zhiyan Du, Zhi Li, Feng-Lei Fan, Tieyong Zeng
- Abstract summary: Deep image prior (DIP) proposes to use the deep network as a regularizer for a single image rather than as a supervised model.
In this paper, we combine total generalized variational (TGV) regularization with VDIP to overcome these shortcomings.
The proposed VDIP-TGV effectively recovers image edges and details by supplementing extra gradient information through TGV.
- Score: 21.291149526862416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering clear images from blurry ones with an unknown blur kernel is a
challenging problem. Deep image prior (DIP) proposes to use the deep network as
a regularizer for a single image rather than as a supervised model, which
achieves encouraging results in the nonblind deblurring problem. However, since
the relationship between images and the network architectures is unclear, it is
hard to find a suitable architecture to provide sufficient constraints on the
estimated blur kernels and clean images. Also, DIP uses the sparse maximum a
posteriori (MAP), which is insufficient to enforce the selection of the
recovery image. Recently, variational deep image prior (VDIP) was proposed to
impose constraints on both blur kernels and recovery images and take the
standard deviation of the image into account during the optimization process by
the variational principle. However, we empirically find that VDIP struggles
with processing image details and tends to generate suboptimal results when the
blur kernel is large. Therefore, we combine total generalized variational (TGV)
regularization with VDIP in this paper to overcome these shortcomings of VDIP.
TGV is a flexible regularization that utilizes the characteristics of partial
derivatives of varying orders to regularize images at different scales,
reducing oil painting artifacts while maintaining sharp edges. The proposed
VDIP-TGV effectively recovers image edges and details by supplementing extra
gradient information through TGV. Additionally, this model is solved by the
alternating direction method of multipliers (ADMM), which effectively combines
traditional algorithms and deep learning methods. Experiments show that our
proposed VDIP-TGV surpasses various state-of-the-art models quantitatively and
qualitatively.
Related papers
- Neural Gradient Regularizer [150.85797800807524]
We propose a neural gradient regularizer (NGR) that expresses the gradient map as the output of a neural network.
NGR is applicable to various image types and different image processing tasks, functioning in a zero-shot learning fashion.
arXiv Detail & Related papers (2023-08-31T10:19:23Z) - Generative Diffusion Prior for Unified Image Restoration and Enhancement [62.76390152617949]
Existing image restoration methods mostly leverage the posterior distribution of natural images.
We propose the Generative Diffusion Prior (GDP) to effectively model the posterior distributions in an unsupervised sampling manner.
GDP utilizes a pre-train denoising diffusion generative model (DDPM) for solving linear inverse, non-linear, or blind problems.
arXiv Detail & Related papers (2023-04-03T16:52:43Z) - Deep Generalized Unfolding Networks for Image Restoration [16.943609020362395]
We propose a Deep Generalized Unfolding Network (DGUNet) for image restoration.
We integrate a gradient estimation strategy into the gradient descent step of the Proximal Gradient Descent (PGD) algorithm.
Our method is superior in terms of state-of-the-art performance, interpretability, and generalizability.
arXiv Detail & Related papers (2022-04-28T08:39:39Z) - Blind Image Deconvolution Using Variational Deep Image Prior [4.92175281564179]
This paper proposes a new variational deep image prior (VDIP) for blind image deconvolution.
VDIP exploits additive hand-crafted image priors on latent sharp images and approximates a distribution for each pixel to avoid suboptimal solutions.
Experiments show that the generated images have better quality than that of the original DIP on benchmark datasets.
arXiv Detail & Related papers (2022-02-01T01:33:58Z) - SRWarp: Generalized Image Super-Resolution under Arbitrary
Transformation [65.88321755969677]
Deep CNNs have achieved significant successes in image processing and its applications, including single image super-resolution.
Recent approaches extend the scope to real-valued upsampling factors.
We propose the SRWarp framework to further generalize the SR tasks toward an arbitrary image transformation.
arXiv Detail & Related papers (2021-04-21T02:50:41Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A deep primal-dual proximal network for image restoration [8.797434238081372]
We design a deep network, named DeepPDNet, built from primal-dual iterations associated with the minimization of a standard penalized likelihood with an analysis prior.
Two different learning strategies: "Full learning" and "Partial learning" are proposed, the first one is the most efficient numerically.
Extensive results show that the proposed DeepPDNet demonstrates excellent performance on the MNIST and the more complex BSD68, BSD100, and SET14 datasets for image restoration and single image super-resolution task.
arXiv Detail & Related papers (2020-07-02T08:29:52Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.