On the Theory of Risk-Aware Agents: Bridging Actor-Critic and Economics
- URL: http://arxiv.org/abs/2310.19527v3
- Date: Fri, 24 May 2024 14:40:18 GMT
- Title: On the Theory of Risk-Aware Agents: Bridging Actor-Critic and Economics
- Authors: Michal Nauman, Marek Cygan,
- Abstract summary: Risk-aware Reinforcement Learning algorithms were shown to outperform risk-neutral counterparts in a variety of continuous-action tasks.
The theoretical basis for the pessimistic objectives these algorithms employ remains unestablished.
We propose Dual Actor-Critic (DAC) as a risk-aware, model-free algorithm that features two distinct actor networks.
- Score: 0.7655800373514546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Risk-aware Reinforcement Learning (RL) algorithms like SAC and TD3 were shown empirically to outperform their risk-neutral counterparts in a variety of continuous-action tasks. However, the theoretical basis for the pessimistic objectives these algorithms employ remains unestablished, raising questions about the specific class of policies they are implementing. In this work, we apply the expected utility hypothesis, a fundamental concept in economics, to illustrate that both risk-neutral and risk-aware RL goals can be interpreted through expected utility maximization using an exponential utility function. This approach reveals that risk-aware policies effectively maximize value certainty equivalent, aligning them with conventional decision theory principles. Furthermore, we propose Dual Actor-Critic (DAC). DAC is a risk-aware, model-free algorithm that features two distinct actor networks: a pessimistic actor for temporal-difference learning and an optimistic actor for exploration. Our evaluations of DAC across various locomotion and manipulation tasks demonstrate improvements in sample efficiency and final performance. Remarkably, DAC, while requiring significantly less computational resources, matches the performance of leading model-based methods in the complex dog and humanoid domains.
Related papers
- Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Risk-Sensitive Soft Actor-Critic for Robust Deep Reinforcement Learning
under Distribution Shifts [11.765000124617186]
We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage optimization problems.
We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning.
arXiv Detail & Related papers (2024-02-15T14:55:38Z) - Risk-sensitive Markov Decision Process and Learning under General
Utility Functions [3.6260136172126667]
Reinforcement Learning (RL) has gained substantial attention across diverse application domains and theoretical investigations.
We propose a modified value algorithm that employs an epsilon-covering over the space of cumulative reward.
In the absence of a simulator, our algorithm, designed with an upper-confidence-bound exploration approach, identifies a near-optimal policy.
arXiv Detail & Related papers (2023-11-22T18:50:06Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning [0.0]
We develop an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks.
We also develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions.
arXiv Detail & Related papers (2022-06-29T14:11:15Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Bounded Risk-Sensitive Markov Games: Forward Policy Design and Inverse
Reward Learning with Iterative Reasoning and Cumulative Prospect Theory [33.57592649823294]
We investigate the problem of bounded risk-sensitive Markov Game (BRSMG) and its inverse reward learning problem.
We show that humans have bounded intelligence and maximize risk-sensitive utilities in BRSMGs.
The results show that the behaviors of agents demonstrate both risk-averse and risk-seeking characteristics.
arXiv Detail & Related papers (2020-09-03T07:32:32Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.