Skip-WaveNet: A Wavelet based Multi-scale Architecture to Trace Snow Layers in Radar Echograms
- URL: http://arxiv.org/abs/2310.19574v2
- Date: Fri, 24 Jan 2025 03:23:47 GMT
- Title: Skip-WaveNet: A Wavelet based Multi-scale Architecture to Trace Snow Layers in Radar Echograms
- Authors: Debvrat Varshney, Masoud Yari, Oluwanisola Ibikunle, Jilu Li, John Paden, Aryya Gangopadhyay, Maryam Rahnemoonfar,
- Abstract summary: We develop wavelet-based multi-scale deep learning architectures for radar echograms to improve snow layer detection.
These architectures estimate the layer depths with a mean absolute error of 3.31 pixels and 94.3% average precision, achieving higher generalizability as compared to state-of-the-art snow layer detection networks.
Such robust architectures can be used on echograms from future missions to efficiently trace snow layers, estimate their individual thicknesses and thus support sea-level rise projection models.
- Score: 0.5235143203977018
- License:
- Abstract: Airborne radar sensors capture the profile of snow layers present on top of an ice sheet. Accurate tracking of these layers is essential to calculate their thicknesses, which are required to investigate the contribution of polar ice cap melt to sea-level rise. However, automatically processing the radar echograms to detect the underlying snow layers is a challenging problem. In our work, we develop wavelet-based multi-scale deep learning architectures for these radar echograms to improve snow layer detection. These architectures estimate the layer depths with a mean absolute error of 3.31 pixels and 94.3% average precision, achieving higher generalizability as compared to state-of-the-art snow layer detection networks. These depth estimates also agree well with physically drilled stake measurements. Such robust architectures can be used on echograms from future missions to efficiently trace snow layers, estimate their individual thicknesses and thus support sea-level rise projection models.
Related papers
- DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
We present DepthSplat to connect Gaussian splatting and depth estimation.
We first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features.
We also show that Gaussian splatting can serve as an unsupervised pre-training objective.
arXiv Detail & Related papers (2024-10-17T17:59:58Z) - GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
Existing algorithms process radar data by projecting 3D points onto the image plane for pixel-level feature extraction.
We propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data.
We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
arXiv Detail & Related papers (2024-09-02T14:15:09Z) - RIDERS: Radar-Infrared Depth Estimation for Robust Sensing [22.10378524682712]
Adverse weather conditions pose significant challenges to accurate dense depth estimation.
We present a novel approach for robust metric depth estimation by fusing a millimeter-wave Radar and a monocular infrared thermal camera.
Our method achieves exceptional visual quality and accurate metric estimation by addressing the challenges of ambiguity and misalignment.
arXiv Detail & Related papers (2024-02-03T07:14:43Z) - RadarCam-Depth: Radar-Camera Fusion for Depth Estimation with Learned Metric Scale [21.09258172290667]
We present a novel approach for metric dense depth estimation based on the fusion of a single-view image and a sparse, noisy Radar point cloud.
Our proposed method significantly outperforms the state-of-the-art Radar-Camera depth estimation methods by reducing the mean absolute error (MAE) of depth estimation by 25.6% and 40.2% on the challenging nuScenes dataset and our self-collected ZJU-4DRadarCam dataset, respectively.
arXiv Detail & Related papers (2024-01-09T02:40:03Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - Prediction of Annual Snow Accumulation Using a Recurrent Graph
Convolutional Approach [0.38073142980732994]
In recent years, airborne radar sensors, such as the Snow Radar, have been shown to be able to measure internal ice layers over large areas with a fine vertical resolution.
In this work, we experiment with a graph attention network-based model and used it to predict more annual snow accumulation data points with fewer input data points on a larger dataset.
arXiv Detail & Related papers (2023-06-22T19:48:34Z) - 3D Cascade RCNN: High Quality Object Detection in Point Clouds [122.42455210196262]
We present 3D Cascade RCNN, which allocates multiple detectors based on the voxelized point clouds in a cascade paradigm.
We validate the superiority of our proposed 3D Cascade RCNN, when comparing to state-of-the-art 3D object detection techniques.
arXiv Detail & Related papers (2022-11-15T15:58:36Z) - Vision-based Large-scale 3D Semantic Mapping for Autonomous Driving
Applications [53.553924052102126]
We present a complete pipeline for 3D semantic mapping solely based on a stereo camera system.
The pipeline comprises a direct visual odometry front-end as well as a back-end for global temporal integration.
We propose a simple but effective voting scheme which improves the quality and consistency of the 3D point labels.
arXiv Detail & Related papers (2022-03-02T13:18:38Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
We present TANDEM, a real-time monocular tracking and dense framework.
For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of alignments.
TANDEM shows state-of-the-art real-time 3D reconstruction performance.
arXiv Detail & Related papers (2021-11-14T19:01:02Z) - Deep Ice Layer Tracking and Thickness Estimation using Fully
Convolutional Networks [0.5249805590164901]
We introduce a novel way of estimating the thickness of each internal ice layer using Snow Radar images and Fully Convolutional Networks.
The estimated thickness can be used to understand snow accumulation each year.
arXiv Detail & Related papers (2020-09-01T02:43:59Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.