論文の概要: Human-interpretable and deep features for image privacy classification
- arxiv url: http://arxiv.org/abs/2310.19582v2
- Date: Tue, 31 Oct 2023 10:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 19:57:01.504828
- Title: Human-interpretable and deep features for image privacy classification
- Title(参考訳): 画像プライバシー分類のための人間解釈と深層機能
- Authors: Darya Baranouskaya and Andrea Cavallaro
- Abstract要約: 本稿では,画像のプライバシ分類に適した機能について論じるとともに,プライバシに特有かつ人間に解釈可能な8つの特徴を提案する。
これらの機能は、ディープラーニングモデルの性能を高め、それ自身で、より高次元の深い機能と比較して、プライバシ分類のためのイメージ表現を改善する。
- 参考スコア(独自算出の注目度): 32.253391125106674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy is a complex, subjective and contextual concept that is difficult to
define. Therefore, the annotation of images to train privacy classifiers is a
challenging task. In this paper, we analyse privacy classification datasets and
the properties of controversial images that are annotated with contrasting
privacy labels by different assessors. We discuss suitable features for image
privacy classification and propose eight privacy-specific and
human-interpretable features. These features increase the performance of deep
learning models and, on their own, improve the image representation for privacy
classification compared with much higher dimensional deep features.
- Abstract(参考訳): プライバシーは、定義が難しい複雑で主観的で文脈的な概念である。
したがって、プライバシー分類器を訓練するための画像のアノテーションは難しい課題である。
本稿では,プライバシ分類データセットと,異なるアセスタによるプライバシラベルを対比したアノテート画像の特性について分析する。
画像のプライバシ分類に適した特徴について検討し,8つのプライバシに特有かつ人間に解釈可能な特徴を提案する。
これらの機能はディープラーニングモデルの性能を高め、それ自身で、より高次元の深い機能と比較して、プライバシ分類のためのイメージ表現を改善する。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Image-guided topic modeling for interpretable privacy classification [27.301741710016223]
本稿では,自然言語コンテンツ記述子を用いて画像のプライバシーを予測することを提案する。
これらのコンテンツ記述子は、人々がイメージコンテンツをどう知覚するかを反映したプライバシースコアと関連付けられている。
ITMの生成した記述子を使ってプライバシ予測子(Priv$times$ITM)を学習し、その決定は設計によって解釈できる。
論文 参考訳(メタデータ) (2024-09-27T12:02:28Z) - Explaining models relating objects and privacy [33.78605193864911]
画像から抽出したオブジェクトを用いて、なぜ画像がプライベートであると予測されるのかを判断するプライバシーモデルを評価する。
プライバシ決定の主要な要因は、個人カテゴリの存在と、その濃度であることを示す。
論文 参考訳(メタデータ) (2024-05-02T18:06:48Z) - SHAN: Object-Level Privacy Detection via Inference on Scene Heterogeneous Graph [5.050631286347773]
プライバシオブジェクト検出は、画像内のプライベートオブジェクトを正確に見つけることを目的としている。
既存の手法は、精度、一般化、解釈可能性の重大な欠陥に悩まされている。
本稿では、画像からシーン異質グラフを構成するモデルであるSHAN(Scene Heterogeneous Graph Attention Network)を提案する。
論文 参考訳(メタデータ) (2024-03-14T08:32:14Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Fairly Private: Investigating The Fairness of Visual Privacy
Preservation Algorithms [1.5293427903448025]
本稿では,一般的に使用されている視覚的プライバシ保護アルゴリズムの妥当性について検討する。
PubFigデータセットの実験は、提供されたプライバシ保護がグループ間で不平等であることを明確に示している。
論文 参考訳(メタデータ) (2023-01-12T13:40:38Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Content-based Graph Privacy Advisor [38.733077459065704]
本稿では,画像のプライバシを予測するための手がかりとして,シーン情報とオブジェクトの濃度を用いた画像プライバシー分類器を提案する。
我々のグラフプライバシ・アドバイザ(GPA)モデルは、最先端のグラフモデルを単純化し、その性能を改善する。
論文 参考訳(メタデータ) (2022-10-20T11:12:42Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Privacy-Preserving Image Features via Adversarial Affine Subspace
Embeddings [72.68801373979943]
多くのコンピュータビジョンシステムでは、ユーザーは画像処理とストレージのためにイメージ機能をクラウドにアップロードする必要がある。
本稿では,新しいプライバシー保護機能表現を提案する。
従来の特徴と比較すると,敵が個人情報を回収するのは極めて困難である。
論文 参考訳(メタデータ) (2020-06-11T17:29:48Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。