Prediction of Locally Stationary Data Using Expert Advice
- URL: http://arxiv.org/abs/2310.19591v1
- Date: Mon, 30 Oct 2023 14:48:01 GMT
- Title: Prediction of Locally Stationary Data Using Expert Advice
- Authors: Vladimir V'yugin, Vladimir Trunov
- Abstract summary: The problem of continuous machine learning is studied.
No assumptions about the nature of the source that generates the data flow are used.
An online forecasting algorithm for a locally stationary time series is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of continuous machine learning is studied. Within the framework
of the game-theoretic approach, when for calculating the next forecast, no
assumptions about the stochastic nature of the source that generates the data
flow are used -- the source can be analog, algorithmic or probabilistic, its
parameters can change at random times, when building a prognostic model, only
structural assumptions are used about the nature of data generation. An online
forecasting algorithm for a locally stationary time series is presented. An
estimate of the efficiency of the proposed algorithm is obtained.
Related papers
- Structured Prediction in Online Learning [66.36004256710824]
We study a theoretical and algorithmic framework for structured prediction in the online learning setting.
We show that our algorithm is a generalisation of optimal algorithms from the supervised learning setting.
We consider a second algorithm designed especially for non-stationary data distributions, including adversarial data.
arXiv Detail & Related papers (2024-06-18T07:45:02Z) - Deep Non-Parametric Time Series Forecaster [19.800783133682955]
The proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy.
We develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series.
arXiv Detail & Related papers (2023-12-22T12:46:30Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Mixed moving average field guided learning for spatio-temporal data [0.0]
We define a novel Bayesian-temporal embedding and a theory-guided machine learning approach to make ensemble forecasts.
We use Lipschitz predictors to determine fixed-time and any-time PAC in the batch learning setting.
We then test the performance of our learning methodology by using linear predictors and data sets simulated from a dependence- Ornstein-Uhlenbeck process.
arXiv Detail & Related papers (2023-01-02T16:11:05Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
A novel approach for the construction and training of time series models is presented.
The proposed method is appropriate for constructing predictive models for non-stationary time series.
arXiv Detail & Related papers (2020-11-23T21:28:03Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
We propose a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design.
A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift.
Numerical experiments on both synthetic and real-world data sets demonstrate that our BSSP algorithm significantly outperforms the baseline methods for stable prediction across unknown test data.
arXiv Detail & Related papers (2020-06-08T07:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.