論文の概要: Convolutional Neural Networks for Automatic Detection of Intact
Adenovirus from TEM Imaging with Debris, Broken and Artefacts Particles
- arxiv url: http://arxiv.org/abs/2310.19630v1
- Date: Mon, 30 Oct 2023 15:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 19:28:18.877556
- Title: Convolutional Neural Networks for Automatic Detection of Intact
Adenovirus from TEM Imaging with Debris, Broken and Artefacts Particles
- Title(参考訳): デブリ・破壊・アーティファクト粒子を用いたtem画像からの無傷アデノウイルス自動検出のための畳み込みニューラルネットワーク
- Authors: Olivier Rukundo, Andrea Behanova, Riccardo De Feo, Seppo Ronkko, Joni
Oja, Jussi Tohka
- Abstract要約: 医薬品製品の一次粒子と純度プロファイルの定期的なモニタリングは、製造者が製品の変動や汚染を避けるために不可欠である。
破片、破片、アーティファクト粒子を混合した非接種ウイルス背景に対する無傷アデノウイルスの検出を自動化することは有用である。
我々は,アデノウイルスの半自動アノテーションとセグメンテーションのためのソフトウェアツールと,TEMイメージングシステムにおける無傷アデノウイルスの自動セグメンテーションと検出のためのソフトウェアツールを開発した。
- 参考スコア(独自算出の注目度): 0.1398098625978622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regular monitoring of the primary particles and purity profiles of a drug
product during development and manufacturing processes is essential for
manufacturers to avoid product variability and contamination. Transmission
electron microscopy (TEM) imaging helps manufacturers predict how changes
affect particle characteristics and purity for virus-based gene therapy vector
products and intermediates. Since intact particles can characterize efficacious
products, it is beneficial to automate the detection of intact adenovirus
against a non-intact-viral background mixed with debris, broken, and artefact
particles. In the presence of such particles, detecting intact adenoviruses
becomes more challenging. To overcome the challenge, due to such a presence, we
developed a software tool for semi-automatic annotation and segmentation of
adenoviruses and a software tool for automatic segmentation and detection of
intact adenoviruses in TEM imaging systems. The developed semi-automatic tool
exploited conventional image analysis techniques while the automatic tool was
built based on convolutional neural networks and image analysis techniques. Our
quantitative and qualitative evaluations showed outstanding true positive
detection rates compared to false positive and negative rates where
adenoviruses were nicely detected without mistaking them for real debris,
broken adenoviruses, and/or staining artefacts.
- Abstract(参考訳): 製造および製造過程における医薬品の一次粒子および純度プロファイルの定期的なモニタリングは、製造者が製品の変動や汚染を避けるために不可欠である。
透過電子顕微鏡(TEM)イメージングは、ウイルスベースの遺伝子治療ベクター製品と中間体において、変化が粒子の特性と純度に与える影響を予測するのに役立つ。
無傷粒子は有効成分を特徴付けることができるため、粉体、破砕物、アーティファクト粒子を混合した非インタクトウイルス背景に対する無傷アデノウイルスの検出を自動化することが有用である。
このような粒子の存在下では、無傷アデノウイルスの検出がより困難になる。
この課題を克服するため,我々は,アデノウイルスのセミオートアノテーションとセグメンテーションのためのソフトウェアツールと,temイメージングシステムにおける無傷アデノウイルスの自動セグメンテーションと検出のためのソフトウェアツールを開発した。
開発した半自動ツールは従来の画像解析手法を活用し,畳み込みニューラルネットワークと画像解析技術に基づいて自動ツールを構築した。
定量・定性評価の結果, 真正検出率は偽陽性, 陰性で, アデノウイルスは本物のデブリや破断性アデノウイルス, 染色性アーティファクトと誤認することなく良好な検出率を示した。
関連論文リスト
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Heterogeneous virus classification using a functional deep learning model based on transmission electron microscopy images (Preprint) [2.1346640951813165]
透過電子顕微鏡(TEM)画像の解析は、インスタントウイルスの同定に非常に成功したことが証明されている。
本稿では,これらの画像中のウイルスの種類を正確に識別する深層学習に基づく分類モデルを提案する。
実験の結果、データセットに存在する14種類のウイルスを97.44%の分類精度とF1スコアで区別できることが示された。
論文 参考訳(メタデータ) (2024-05-24T13:52:14Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Tissue Artifact Segmentation and Severity Analysis for Automated
Diagnosis Using Whole Slide Images [0.0]
本稿では,畳み込みニューラルネットワークを用いたアーティファクト検出に重大度評価を取り入れたシステムを提案する。
提案システムはDoubleUNetを用いてアーティファクトを分割し、6つの微調整された畳み込みニューラルネットワークモデルのアンサンブルネットワークを用いて重大性を決定する。
論文 参考訳(メタデータ) (2024-01-01T19:58:36Z) - Deep learning-based instance segmentation for the precise automated
quantification of digital breast cancer immunohistochemistry images [1.8434042562191815]
深層学習に基づくインスタンスセグメンテーションアーキテクチャを用いて,IHCスライスに適用した核バイオマーカーと膜バイオマーカーの自動定量化の実現可能性を示した。
HE, ER, Ki-67 (核バイオマーカー) およびHER2 (膜バイオマーカー) IHC-stained image を用いてアノテーションを収集した。
我々は、2つのモデル(いわゆる核・膜認識セグメンテーションモデル)を訓練した。
論文 参考訳(メタデータ) (2023-11-22T22:23:47Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Pixel precise unsupervised detection of viral particle proliferation in
cellular imaging data [0.0]
宿主細胞単層膜におけるウイルス粒子の増殖を示す細胞イメージングデータを用いて,コンピュータ生成画像を用いた。
本研究では、死細胞または部分感染細胞を表す黒または灰色の単一ピクセルにおいて、画像間での1対1の増加と、生きた細胞に対する1対1の白色ピクセルコーディングの1対1の増加による仮説的再開により、ウイルス粒子の経時的増加をシミュレートする。
160のモデル画像のSOM-QEによる教師なし分類は、それぞれ300万画素以上あり、統計的に信頼性が高く、正確な画素と高速な分類モデルを提供する。
論文 参考訳(メタデータ) (2020-11-10T16:06:03Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Learning-based Defect Recognition for Quasi-Periodic Microscope Images [0.0]
原子分解能顕微鏡画像からの格子欠陥の検出を支援する半教師付き機械学習手法を提案する。
これには、画像パッチを欠陥または非欠陥として分類する畳み込みニューラルネットワーク、モデルとして1つの非欠陥パッチを選択するグラフベース、そして最後に自動生成された畳み込みフィルタバンクが含まれる。
このアルゴリズムは、III-V/Si結晶材料上でテストされ、異なる測定値に対してうまく評価され、非常に小さなトレーニングデータセットであっても有望な結果を示す。
論文 参考訳(メタデータ) (2020-07-02T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。