論文の概要: Dynamics of Instruction Fine-Tuning for Chinese Large Language Models
- arxiv url: http://arxiv.org/abs/2310.19651v3
- Date: Mon, 03 Mar 2025 07:49:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:10:29.888156
- Title: Dynamics of Instruction Fine-Tuning for Chinese Large Language Models
- Title(参考訳): 中国語大国語モデルのインストラクションファインタニングのダイナミクス
- Authors: Chiyu Song, Zhanchao Zhou, Jianhao Yan, Yuejiao Fei, Zhenzhong Lan, Yue Zhang,
- Abstract要約: 本研究では,中国語大言語モデルの指導指導におけるデータ量,モデルサイズ,データ構築方法の影響を体系的に検討する。
実験では,7bから33bパラメータのモデルを用いて3つの重要な結果を得た。
- 参考スコア(独自算出の注目度): 19.832906541004114
- License:
- Abstract: Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). While numerous studies have examined the impact of factors such as data volume and model size on English models, the scaling properties of instruction tuning in other languages remain largely unexplored. In this work, we systematically investigate the effects of data quantity, model size, and data construction methods on instruction tuning for Chinese LLMs. We utilize a newly curated dataset, DoIT, which includes over 40,000 high-quality instruction instances covering ten underlying abilities, such as creative writing, code generation, and logical reasoning. Our experiments, conducted on models ranging from 7b to 33b parameters, yield three key findings: (i) While these factors directly affect overall model performance, some abilities are more responsive to scaling, whereas others demonstrate significant resistance. (ii) The scaling sensitivity of different abilities to these factors can be explained by two features: Complexity and Transference. (iii) By tailoring training strategies to their varying sensitivities, specific abilities can be efficiently learned, enhancing performance on two public benchmarks.
- Abstract(参考訳): インストラクションチューニングは、Large Language Models (LLMs) の汎用インテリジェンスを引き出す手法である。
データ量やモデルサイズなどの要因が英語モデルに与える影響について多くの研究が行われてきたが、他の言語における命令チューニングのスケーリング特性はほとんど解明されていない。
本研究では,中国語LLMの指導指導におけるデータ量,モデルサイズ,データ構築方法の影響を体系的に検討する。
このデータセットには、クリエイティブな記述、コード生成、論理的推論など、10の基本的な能力をカバーする4万以上の高品質なインストラクションインスタンスが含まれています。
実験では,7bから33bパラメータのモデルを用いて,3つの重要な結果を得た。
(i)これらの要因はモデル全体のパフォーマンスに直接影響を与えるが、スケーリングに応答する能力がある一方で、大きな抵抗を示す能力もある。
(2)これらの要因に対する異なる能力のスケーリング感度は、複雑さと伝達性という2つの特徴によって説明できる。
三 訓練戦略を各種感性に合わせることにより、特定の能力の学習を効果的に行い、2つの公開ベンチマークのパフォーマンスを向上させることができる。
関連論文リスト
- MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - $\textbf{Only-IF}$:Revealing the Decisive Effect of Instruction Diversity on Generalization [1.6958018695660049]
トレーニングデータがセマンティックドメインで十分に分散されている場合、textbfonlyが$であることを示す。
例えば$textit$textbfspecialist$$と$textit$textbf generalist$$$モデルの微調整などです。
論文 参考訳(メタデータ) (2024-10-07T03:15:11Z) - Enhancing SLM via ChatGPT and Dataset Augmentation [0.3844771221441211]
我々は,大言語モデル (LLMs) と小言語モデル (SLMs) のパフォーマンスギャップを埋めるために,知識蒸留技術と合成データセット拡張を用いている。
提案手法は,情報抽出と情報推論という2種類の理性生成を伴い,ANLIデータセットを充実させる。
その結果, 合成合理化によって自然言語の理解能力が向上し, ANLIデータセット上での分類精度が1.3%, 2.3%向上することが判明した。
論文 参考訳(メタデータ) (2024-09-19T09:24:36Z) - Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning [64.5243480989869]
コーディングデータは、事前訓練中に推論能力を高めることで知られています。
IFTにおける内的推論能力の活性化におけるその役割はいまだ検討されている。
IFT段階におけるLLMの推論能力に及ぼす符号化データの影響について検討する。
論文 参考訳(メタデータ) (2024-05-30T23:20:25Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
本稿では,命令データのスケールの異なる命令データに対して,命令チューニングに基づく大規模言語モデルの性能について検討する。
ベースモデルとしてBloomz-7B1-mtを用いると、命令データの量を増やすだけで、オープン・エンド・ジェネレーションのようなタスクが継続的に改善されることが示される。
本稿では,高品質なトレーニングデータ,スケールベースモデル,ハードタスクに特化したトレーニング手法を効果的に選択する,といった将来的な研究方向を提案する。
論文 参考訳(メタデータ) (2023-03-26T14:49:37Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。