Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions
- URL: http://arxiv.org/abs/2310.19695v3
- Date: Wed, 8 May 2024 09:50:38 GMT
- Title: Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions
- Authors: Saúl Alonso-Monsalve, Davide Sgalaberna, Xingyu Zhao, Adrien Molines, Clark McGrew, André Rubbia,
- Abstract summary: This paper presents a solution that leverages the power of deep learning to accurately extract individual objects within multi-dimensional overlapping-sparse images.
It is a direct application in high-energy physics with decomposition of overlaid elementary particles obtained from imaging detectors.
- Score: 2.5521723486759407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image decomposition plays a crucial role in various computer vision tasks, enabling the analysis and manipulation of visual content at a fundamental level. Overlapping images, which occur when multiple objects or scenes partially occlude each other, pose unique challenges for decomposition algorithms. The task intensifies when working with sparse images, where the scarcity of meaningful information complicates the precise extraction of components. This paper presents a solution that leverages the power of deep learning to accurately extract individual objects within multi-dimensional overlapping-sparse images, with a direct application in high-energy physics with decomposition of overlaid elementary particles obtained from imaging detectors. In particular, the proposed approach tackles a highly complex yet unsolved problem: identifying and measuring independent particles at the vertex of neutrino interactions, where one expects to observe detector images with multiple indiscernible overlapping charged particles. By decomposing the image of the detector activity at the vertex through deep learning, it is possible to infer the kinematic parameters of the identified low-momentum particles - which otherwise would remain neglected - and enhance the reconstructed energy resolution of the neutrino event. We also present an additional step - that can be tuned directly on detector data - combining the above method with a fully-differentiable generative model to improve the image decomposition further and, consequently, the resolution of the measured parameters, achieving unprecedented results. This improvement is crucial for precisely measuring the parameters that govern neutrino flavour oscillations and searching for asymmetries between matter and antimatter.
Related papers
- Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis [8.997702776298091]
We propose a new deep neural network, called DENODET, which performs image denoising and particle detection simultaneously.
Our method achieves superior results compared to state-of-the-art particle detection methods on the particle tracking challenge dataset and our own real fluorescence microscopy image data.
arXiv Detail & Related papers (2024-08-15T03:13:53Z) - Decomposition-based and Interference Perception for Infrared and Visible
Image Fusion in Complex Scenes [4.919706769234434]
We propose a decomposition-based and interference perception image fusion method.
We classify the pixels of visible image from the degree of scattering of light transmission, based on which we then separate the detail and energy information of the image.
This refined decomposition facilitates the proposed model in identifying more interfering pixels that are in complex scenes.
arXiv Detail & Related papers (2024-02-03T09:27:33Z) - Recursive Detection and Analysis of Nanoparticles in Scanning Electron
Microscopy Images [0.0]
We present a computational framework tailored for the precise detection and comprehensive analysis of nanoparticles within scanning electron microscopy (SEM) images.
The framework employs the robust image processing capabilities of Python, particularly harnessing libraries such as OpenCV, SciPy, and Scikit-Image.
It boasts 97% accuracy in detecting particles across five distinct test images drawn from a SEM nanoparticles dataset.
arXiv Detail & Related papers (2023-08-17T02:08:05Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Amortized Inference for Heterogeneous Reconstruction in Cryo-EM [36.911133113707045]
cryo-electron microscopy (cryo-EM) provides insights into the dynamics of proteins and other building blocks of life.
The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule remains unsolved.
Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework.
We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy.
arXiv Detail & Related papers (2022-10-13T22:06:38Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
We have developed a method to identify independently objects acquired with an event-based camera.
The method performs on par or better than the state of the art without having to predetermine the number of expected moving objects.
arXiv Detail & Related papers (2020-12-16T04:06:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.