Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis
- URL: http://arxiv.org/abs/2408.07903v1
- Date: Thu, 15 Aug 2024 03:13:53 GMT
- Title: Deep Joint Denoising and Detection for Enhanced Intracellular Particle Analysis
- Authors: Yao Yao, Ihor Smal, Ilya Grigoriev, Anna Akhmanova, Erik Meijering,
- Abstract summary: We propose a new deep neural network, called DENODET, which performs image denoising and particle detection simultaneously.
Our method achieves superior results compared to state-of-the-art particle detection methods on the particle tracking challenge dataset and our own real fluorescence microscopy image data.
- Score: 8.997702776298091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable analysis of intracellular dynamic processes in time-lapse fluorescence microscopy images requires complete and accurate tracking of all small particles in all time frames of the image sequences. A fundamental first step towards this goal is particle detection. Given the small size of the particles, their detection is greatly affected by image noise. Recent studies have shown that applying image denoising as a preprocessing step indeed improves particle detection and their subsequent tracking. Deep learning based particle detection methods have shown superior results compared to traditional detection methods. However, they do not explicitly aim to remove noise from the images to facilitate detection. Thus we hypothesize that their performance could be further improved. In this paper, we propose a new deep neural network, called DENODET (denoising-detection network), which performs image denoising and particle detection simultaneously. We show that integrative denoising and detection yields more accurate detection results. Our method achieves superior results compared to state-of-the-art particle detection methods on the particle tracking challenge dataset and our own real fluorescence microscopy image data.
Related papers
- AI-based particle track identification in scintillating fibres read out with imaging sensors [1.321203201549798]
We propose a variational autoencoder (VAE) to efficiently filter and identify frames containing signal from the substantial data generated by SPAD array sensors.
Our VAE model, trained on purely background frames, demonstrated a high capability to distinguish frames containing particle tracks from background noise.
arXiv Detail & Related papers (2024-10-14T13:59:30Z) - Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions [2.5521723486759407]
This paper presents a solution that leverages the power of deep learning to accurately extract individual objects within multi-dimensional overlapping-sparse images.
It is a direct application in high-energy physics with decomposition of overlaid elementary particles obtained from imaging detectors.
arXiv Detail & Related papers (2023-10-30T16:12:25Z) - Recursive Detection and Analysis of Nanoparticles in Scanning Electron
Microscopy Images [0.0]
We present a computational framework tailored for the precise detection and comprehensive analysis of nanoparticles within scanning electron microscopy (SEM) images.
The framework employs the robust image processing capabilities of Python, particularly harnessing libraries such as OpenCV, SciPy, and Scikit-Image.
It boasts 97% accuracy in detecting particles across five distinct test images drawn from a SEM nanoparticles dataset.
arXiv Detail & Related papers (2023-08-17T02:08:05Z) - Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
We show that a network trained to predict where the next photon could arrive is in fact solving the minimum mean square error (MMSE) denoising task.
We present a new strategy for self-supervised denoising.
We present a new method for sampling from the posterior of possible solutions by iteratively sampling and adding small numbers of photons to the image.
arXiv Detail & Related papers (2023-07-13T08:03:32Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Deep Photon Mapping [59.41146655216394]
In this paper, we develop the first deep learning-based method for particle-based rendering.
We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points.
Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point, and infers a kernel function from the per-photon and photon local context features.
arXiv Detail & Related papers (2020-04-25T06:59:10Z) - Effective statistical fringe removal algorithm for high-sensitivity
imaging of ultracold atoms [3.4521385239788813]
We show an advanced fringe removal algorithm for absorption imaging of ultracold atoms.
It efficiently suppresses unwanted fringe patterns using a small number of sample images.
arXiv Detail & Related papers (2020-02-24T03:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.