論文の概要: Re-evaluating Retrosynthesis Algorithms with Syntheseus
- arxiv url: http://arxiv.org/abs/2310.19796v3
- Date: Fri, 6 Sep 2024 17:55:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 20:53:23.506461
- Title: Re-evaluating Retrosynthesis Algorithms with Syntheseus
- Title(参考訳): 合成を用いた再合成アルゴリズムの再評価
- Authors: Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp Seidl, Marwin Segler,
- Abstract要約: 本稿では,Syntheseusと呼ばれる広範なベンチマークフレームワークを備えた合成計画ライブラリを提案する。
我々は, 過去のレトロシンセシスアルゴリズムを再評価することにより, 合成能力を示す。
この領域における今後の作業に関するガイダンスを最後に、コミュニティに合成計画のベンチマークを改善する方法についての議論を呼びかけます。
- 参考スコア(独自算出の注目度): 13.384695742156152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated Synthesis Planning has recently re-emerged as a research area at the intersection of chemistry and machine learning. Despite the appearance of steady progress, we argue that imperfect benchmarks and inconsistent comparisons mask systematic shortcomings of existing techniques, and unnecessarily hamper progress. To remedy this, we present a synthesis planning library with an extensive benchmarking framework, called syntheseus, which promotes best practice by default, enabling consistent meaningful evaluation of single-step models and multi-step planning algorithms. We demonstrate the capabilities of syntheseus by re-evaluating several previous retrosynthesis algorithms, and find that the ranking of state-of-the-art models changes in controlled evaluation experiments. We end with guidance for future works in this area, and call the community to engage in the discussion on how to improve benchmarks for synthesis planning.
- Abstract(参考訳): 自動合成計画(Automated Synthesis Planning)は、最近、化学と機械学習の交差する研究領域として再登場した。
着実な進歩の出現にもかかわらず、不完全なベンチマークと矛盾した比較は既存の技術の体系的な欠点を隠蔽し、必然的に進歩を妨げていると論じる。
そこで本稿では,Syntheseusと呼ばれる広範囲なベンチマークフレームワークを備えた合成計画ライブラリを提案する。
本研究では, 過去のレトロシンセシスアルゴリズムを再評価することにより, 合成の能力を実証し, 制御された評価実験において, 最先端モデルのランキングが変化することを示した。
この領域における今後の作業に関するガイダンスを最後に、コミュニティに合成計画のベンチマークを改善する方法についての議論を呼びかけます。
関連論文リスト
- Double-Ended Synthesis Planning with Goal-Constrained Bidirectional Search [27.09693306892583]
材料制約を始点とする合成計画の定式化について述べる。
本稿では,双方向グラフ探索方式に基づく新しいCASPアルゴリズムであるDouble-Ended Synthesis Planning (DESP)を提案する。
DESPは既存のワンステップ逆合成モデルを利用することができ、これらのワンステップモデルの性能が向上するにつれて、その性能が拡大すると予想する。
論文 参考訳(メタデータ) (2024-07-08T18:56:00Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
トピック分類,感情分析,トーン検出,ユーモアの6つのデータセットの合成について検討した。
その結果,SynthesizRRは語彙や意味の多様性,人文との類似性,蒸留性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-16T12:22:41Z) - Systematic Assessment of Tabular Data Synthesis Algorithms [9.08530697055844]
データ合成アルゴリズムを評価するための体系的評価フレームワークを提案する。
それらの制限に対処するために、フィリティ、プライバシ、ユーティリティの観点から、一連の新しいメトリクスを導入します。
また,提案手法に基づいて,合成データの質を継続的に向上する,チューニングのための統一的な目標も考案した。
論文 参考訳(メタデータ) (2024-02-09T22:07:59Z) - Locally Optimal Descent for Dynamic Stepsize Scheduling [45.6809308002043]
本稿では,段階的スケジュールのマニュアルと時間的チューニングを簡略化することを目的とした,理論に基づく新しい動的学習スケジューリング手法を提案する。
本手法は,スムーズな勾配方向の局所最適練習速度を推定することに基づく。
提案手法は,既存手法と比較して最小限のチューニングが必要であることが示唆された。
論文 参考訳(メタデータ) (2023-11-23T09:57:35Z) - Models Matter: The Impact of Single-Step Retrosynthesis on Synthesis
Planning [0.8620335948752805]
再合成は、化学化合物を段階的に分子前駆体に分解する。
その2つの主要な研究方向、単段階の逆合成予測と多段階の合成計画は本質的に相互に絡み合っている。
単一ステップモデルを選択することで,合成計画の総合的な成功率を最大28%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-08-10T12:04:47Z) - ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis [54.18659323181771]
プログラム合成において望ましいいくつかの異なる構成一般化形式を特徴付ける。
本稿では,ExeDecを提案する。ExeDecは,実行サブゴールを予測し,各ステップでプログラム実行によって段階的に通知される問題を解くための,新しい分解ベースの戦略である。
論文 参考訳(メタデータ) (2023-07-26T01:07:52Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
再合成計画(Retrosynthetic Planning)は、開始物質から標的分子への完全な多段階合成経路を考案することを目的としている。
現在の戦略では、単一ステップの逆合成モデルと探索アルゴリズムの分離されたアプローチを採用している。
本稿では,文脈情報を利用した新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-30T08:44:58Z) - Compositional Generalization and Decomposition in Neural Program
Synthesis [59.356261137313275]
本稿では,学習プログラムシンセサイザーの合成一般化能力の測定に焦点をあてる。
まず、プログラム合成法が一般化されるであろういくつかの異なる軸を特徴付ける。
2つの一般的な既存のデータセットに基づいて、これらの能力を評価するためのタスクのベンチマークスイートを導入する。
論文 参考訳(メタデータ) (2022-04-07T22:16:05Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
反合成計画(retrosynthetic planning)は、ターゲット生成物の合成に繋がる一連の反応を特定する。
既存の手法では、高いばらつきを持つロールアウトによる高価なリターン推定が必要か、品質よりも探索速度を最適化する必要がある。
本稿では,高品質な合成経路を効率よく見つけるニューラルネットワークA*ライクなアルゴリズムRetro*を提案する。
論文 参考訳(メタデータ) (2020-06-29T05:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。