Modeling the Telemarketing Process using Genetic Algorithms and Extreme
Boosting: Feature Selection and Cost-Sensitive Analytical Approach
- URL: http://arxiv.org/abs/2310.19843v1
- Date: Mon, 30 Oct 2023 08:46:55 GMT
- Title: Modeling the Telemarketing Process using Genetic Algorithms and Extreme
Boosting: Feature Selection and Cost-Sensitive Analytical Approach
- Authors: Nazeeh Ghatasheh, Ismail Altaharwa, Khaled Aldebei
- Abstract summary: This research aims at leveraging the power of telemarketing data in modeling the willingness of clients to make a term deposit.
Real-world data from a Portuguese bank and national socio-economic metrics are used to model the telemarketing decision-making process.
- Score: 0.06906005491572399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, almost all direct marketing activities take place virtually rather
than in person, weakening interpersonal skills at an alarming pace.
Furthermore, businesses have been striving to sense and foster the tendency of
their clients to accept a marketing offer. The digital transformation and the
increased virtual presence forced firms to seek novel marketing research
approaches. This research aims at leveraging the power of telemarketing data in
modeling the willingness of clients to make a term deposit and finding the most
significant characteristics of the clients. Real-world data from a Portuguese
bank and national socio-economic metrics are used to model the telemarketing
decision-making process. This research makes two key contributions. First,
propose a novel genetic algorithm-based classifier to select the best
discriminating features and tune classifier parameters simultaneously. Second,
build an explainable prediction model. The best-generated classification models
were intensively validated using 50 times repeated 10-fold stratified
cross-validation and the selected features have been analyzed. The models
significantly outperform the related works in terms of class of interest
accuracy, they attained an average of 89.07\% and 0.059 in terms of geometric
mean and type I error respectively. The model is expected to maximize the
potential profit margin at the least possible cost and provide more insights to
support marketing decision-making.
Related papers
- Bayesian Regression for Predicting Subscription to Bank Term Deposits in Direct Marketing Campaigns [0.0]
The purpose of this research is to examine the efficacy of logit and probit models in predicting term deposit subscriptions.
The target variable was balanced, considering the inherent imbalance in the dataset.
The logit model performed better than the probit model in handling this classification problem.
arXiv Detail & Related papers (2024-10-28T21:04:58Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
We propose the Bayesian Active Learner for Preference Modeling (BAL-PM) for Preference Modeling.
BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
Our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
arXiv Detail & Related papers (2024-06-14T13:32:43Z) - Optimizing Sales Forecasts through Automated Integration of Market Indicators [0.0]
This work investigates the potential of data-driven techniques to automatically select and integrate market indicators for improving customer demand predictions.
By adopting an exploratory methodology, we integrate macroeconomic time series, such as national GDP growth, into textitNeural Prophet and textitSARIMAX forecasting models.
It could be shown that forecasts can be significantly enhanced by incorporating external information.
arXiv Detail & Related papers (2024-05-15T08:11:41Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Model-Free Approximate Bayesian Learning for Large-Scale Conversion
Funnel Optimization [10.560764660131891]
We study the problem of identifying the optimal sequential personalized interventions that maximize the adoption probability for a new product.
We model consumer behavior by a conversion funnel that captures the state of each consumer.
We propose a novel attribution-based decision-making algorithm for this problem that we call model-free approximate Bayesian learning.
arXiv Detail & Related papers (2024-01-12T17:19:44Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
This paper proposes a multimodal fusion learning model for identifying customer churn risk levels in financial service providers.
Our approach integrates customer sentiments financial literacy (FL) level, and financial behavioral data.
Our novel approach demonstrates a marked improvement in churn prediction, achieving a test accuracy of 91.2%, a Mean Average Precision (MAP) score of 66, and a Macro-Averaged F1 score of 54.
arXiv Detail & Related papers (2023-12-03T06:28:55Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Estimating defection in subscription-type markets: empirical analysis
from the scholarly publishing industry [0.0]
We present the first empirical study on customer churn prediction in the scholarly publishing industry.
The study examines our proposed method for prediction on a customer subscription data over a period of 6.5 years.
We show that this approach can be both accurate as well as uniquely useful in the business-to-business context.
arXiv Detail & Related papers (2022-11-18T01:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.