Bayesian Simulation-based Inference for Cosmological Initial Conditions
- URL: http://arxiv.org/abs/2310.19910v1
- Date: Mon, 30 Oct 2023 18:24:25 GMT
- Title: Bayesian Simulation-based Inference for Cosmological Initial Conditions
- Authors: Florian List, Noemi Anau Montel, Christoph Weniger
- Abstract summary: We present a versatile Bayesian field reconstruction algorithm rooted in simulation-based inference and enhanced by autoregressive modeling.
We show first promising results on a proof-of-concept application: the recovery of cosmological initial conditions from late-time density fields.
- Score: 5.954511401622426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing astrophysical and cosmological fields from observations is
challenging. It requires accounting for non-linear transformations, mixing of
spatial structure, and noise. In contrast, forward simulators that map fields
to observations are readily available for many applications. We present a
versatile Bayesian field reconstruction algorithm rooted in simulation-based
inference and enhanced by autoregressive modeling. The proposed technique is
applicable to generic (non-differentiable) forward simulators and allows
sampling from the posterior for the underlying field. We show first promising
results on a proof-of-concept application: the recovery of cosmological initial
conditions from late-time density fields.
Related papers
- Fast Sampling of Cosmological Initial Conditions with Gaussian Neural Posterior Estimation [4.520518890664213]
We show how simulation-based inference can be used to obtain data-constrained realisations of the primordial dark matter density field.
We generate thousands of posterior samples within seconds on a single GPU, orders of magnitude faster than existing methods.
arXiv Detail & Related papers (2025-02-05T13:02:14Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Compositional simulation-based inference for time series [21.9975782468709]
simulators frequently emulate real-world dynamics through thousands of single-state transitions over time.
We propose an SBI framework that can exploit such Markovian simulators by locally identifying parameters consistent with individual state transitions.
We then compose these local results to obtain a posterior over parameters that align with the entire time series observation.
arXiv Detail & Related papers (2024-11-05T01:55:07Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Lattice real-time simulations with learned optimal kernels [49.1574468325115]
We present a simulation strategy for the real-time dynamics of quantum fields inspired by reinforcement learning.
It builds on the complex Langevin approach, which it amends with system specific prior information.
arXiv Detail & Related papers (2023-10-12T06:01:01Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Probabilistic Mass Mapping with Neural Score Estimation [4.079848600120986]
We introduce a novel methodology for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem.
We aim to demonstrate the accuracy of the method on simulations, and then proceed to applying it to the mass reconstruction of the HST/ACS COSMOS field.
arXiv Detail & Related papers (2022-01-14T17:07:48Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.