Fast Sampling of Cosmological Initial Conditions with Gaussian Neural Posterior Estimation
- URL: http://arxiv.org/abs/2502.03139v1
- Date: Wed, 05 Feb 2025 13:02:14 GMT
- Title: Fast Sampling of Cosmological Initial Conditions with Gaussian Neural Posterior Estimation
- Authors: Oleg Savchenko, Guillermo Franco Abellán, Florian List, Noemi Anau Montel, Christoph Weniger,
- Abstract summary: We show how simulation-based inference can be used to obtain data-constrained realisations of the primordial dark matter density field.
We generate thousands of posterior samples within seconds on a single GPU, orders of magnitude faster than existing methods.
- Score: 4.520518890664213
- License:
- Abstract: Knowledge of the primordial matter density field from which the large-scale structure of the Universe emerged over cosmic time is of fundamental importance for cosmology. However, reconstructing these cosmological initial conditions from late-time observations is a notoriously difficult task, which requires advanced cosmological simulators and sophisticated statistical methods to explore a multi-million-dimensional parameter space. We show how simulation-based inference (SBI) can be used to tackle this problem and to obtain data-constrained realisations of the primordial dark matter density field in a simulation-efficient way with general non-differentiable simulators. Our method is applicable to full high-resolution dark matter $N$-body simulations and is based on modelling the posterior distribution of the constrained initial conditions to be Gaussian with a diagonal covariance matrix in Fourier space. As a result, we can generate thousands of posterior samples within seconds on a single GPU, orders of magnitude faster than existing methods, paving the way for sequential SBI for cosmological fields. Furthermore, we perform an analytical fit of the estimated dependence of the covariance on the wavenumber, effectively transforming any point-estimator of initial conditions into a fast sampler. We test the validity of our obtained samples by comparing them to the true values with summary statistics and performing a Bayesian consistency test.
Related papers
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Mean-Field Simulation-Based Inference for Cosmological Initial Conditions [4.520518890664213]
We present a simple method for Bayesian field reconstruction based on modeling the posterior distribution of the initial matter density field to be diagonal Gaussian in Fourier space.
Training and sampling are extremely fast (training: $sim 1, mathrmh$ on a GPU, sampling: $lesssim 3, mathrms$ for 1000 samples at resolution $1283$), and our method supports industry-standard (non-differentiable) $N$-body simulators.
arXiv Detail & Related papers (2024-10-21T09:23:50Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Bayesian Simulation-based Inference for Cosmological Initial Conditions [5.954511401622426]
We present a versatile Bayesian field reconstruction algorithm rooted in simulation-based inference and enhanced by autoregressive modeling.
We show first promising results on a proof-of-concept application: the recovery of cosmological initial conditions from late-time density fields.
arXiv Detail & Related papers (2023-10-30T18:24:25Z) - Lattice real-time simulations with learned optimal kernels [49.1574468325115]
We present a simulation strategy for the real-time dynamics of quantum fields inspired by reinforcement learning.
It builds on the complex Langevin approach, which it amends with system specific prior information.
arXiv Detail & Related papers (2023-10-12T06:01:01Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Fast and realistic large-scale structure from machine-learning-augmented
random field simulations [0.0]
We train a machine learning model to transform projected lognormal dark matter density fields to more realistic dark matter maps.
We demonstrate the performance of our model comparing various statistical tests with different field resolutions, redshifts and cosmological parameters.
arXiv Detail & Related papers (2022-05-16T18:00:01Z) - Flow-based sampling in the lattice Schwinger model at criticality [54.48885403692739]
Flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications.
We provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Probabilistic Mass Mapping with Neural Score Estimation [4.079848600120986]
We introduce a novel methodology for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem.
We aim to demonstrate the accuracy of the method on simulations, and then proceed to applying it to the mass reconstruction of the HST/ACS COSMOS field.
arXiv Detail & Related papers (2022-01-14T17:07:48Z) - Topological Echoes of Primordial Physics in the Universe at Large Scales [0.0]
We compute persistence diagrams and derived statistics for simulations of dark matter halos.
Our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number.
arXiv Detail & Related papers (2020-12-07T12:08:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.