BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing
- URL: http://arxiv.org/abs/2310.19975v3
- Date: Thu, 6 Jun 2024 21:16:12 GMT
- Title: BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing
- Authors: Hieu Tran, Zhichao Yang, Zonghai Yao, Hong Yu,
- Abstract summary: We created the BioInstruct, comprising 25,005 instructions to instruction-tune large language models (LLMs)
The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions.
We evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN)
- Score: 10.698756010878688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance the performance of large language models (LLMs) in biomedical natural language processing (BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-task learning principles. We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA 1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which can be grouped into three major categories: question answering(QA), information extraction(IE), and text generation(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model performance. Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated marked performance gains: 17.3% in QA, 5.7% in IE, and 96% in Generation tasks. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task learning, suggesting the synergies between two tasks. The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best performing BioNLP applications.
Related papers
- Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.
Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains.
textscBiomedRAG attains superior performance across 5 biomedical NLP tasks.
textscBiomedRAG outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
arXiv Detail & Related papers (2024-05-01T12:01:39Z) - Towards Robust Instruction Tuning on Multimodal Large Language Models [25.506776502317436]
In this work, we introduce an automatic instruction augmentation method named INSTRAUG in multimodal tasks.
Results on two popular multimodal instructionfollowing benchmarks show that INSTRAUG can significantly improve the alignment of multimodal large language models (MLLMs) across 12 multimodal tasks.
arXiv Detail & Related papers (2024-02-22T12:35:50Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - Exploring the Effectiveness of Instruction Tuning in Biomedical Language
Processing [19.41164870575055]
This study investigates the potential of instruction tuning for biomedical language processing.
We present a comprehensive, instruction-based model trained on a dataset that consists of approximately $200,000$ instruction-focused samples.
arXiv Detail & Related papers (2023-12-31T20:02:10Z) - Ensemble-Instruct: Generating Instruction-Tuning Data with a
Heterogeneous Mixture of LMs [23.38507910115345]
In-context learning (ICL) techniques can train strong conversational agents with only a small amount of human supervision.
Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses.
We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas.
arXiv Detail & Related papers (2023-10-21T10:21:17Z) - Auto-Instruct: Automatic Instruction Generation and Ranking for
Black-Box Language Models [91.02730155418699]
Large language models (LLMs) can perform a wide range of tasks by following natural language instructions.
We introduce Auto-Instruct, a novel method to automatically improve the quality of instructions provided to LLMs.
In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both human-written instructions and existing baselines of LLM-generated instructions.
arXiv Detail & Related papers (2023-10-19T19:52:55Z) - BayLing: Bridging Cross-lingual Alignment and Instruction Following
through Interactive Translation for Large Language Models [39.03467441090675]
Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation.
We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM.
Demo, homepage, code and models of BayLing are available.
arXiv Detail & Related papers (2023-06-19T14:30:52Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.