Scaling Up Differentially Private LASSO Regularized Logistic Regression
via Faster Frank-Wolfe Iterations
- URL: http://arxiv.org/abs/2310.19978v1
- Date: Mon, 30 Oct 2023 19:52:43 GMT
- Title: Scaling Up Differentially Private LASSO Regularized Logistic Regression
via Faster Frank-Wolfe Iterations
- Authors: Edward Raff, Amol Khanna, Fred Lu
- Abstract summary: We adapt the Frank-Wolfe algorithm for $L_1$ penalized linear regression to be aware of sparse inputs and to use them effectively.
Our results demonstrate that this procedure can reduce runtime by a factor of up to $2,200times$, depending on the value of the privacy parameter $epsilon$ and the sparsity of the dataset.
- Score: 51.14495595270775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To the best of our knowledge, there are no methods today for training
differentially private regression models on sparse input data. To remedy this,
we adapt the Frank-Wolfe algorithm for $L_1$ penalized linear regression to be
aware of sparse inputs and to use them effectively. In doing so, we reduce the
training time of the algorithm from $\mathcal{O}( T D S + T N S)$ to
$\mathcal{O}(N S + T \sqrt{D} \log{D} + T S^2)$, where $T$ is the number of
iterations and a sparsity rate $S$ of a dataset with $N$ rows and $D$ features.
Our results demonstrate that this procedure can reduce runtime by a factor of
up to $2,200\times$, depending on the value of the privacy parameter $\epsilon$
and the sparsity of the dataset.
Related papers
- Turnstile $\ell_p$ leverage score sampling with applications [56.403488578703865]
We develop a novel algorithm for sampling rows $a_i$ of a matrix $AinmathbbRntimes d$, proportional to their $ell_p$ norm, when $A$ is presented in a turnstile data stream.
Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $tildea_i approx a_i$, and approximates their sampling probabilities up to $varepsilon$ relative error.
For logistic regression, our framework yields the first algorithm that achieves a $
arXiv Detail & Related papers (2024-06-01T07:33:41Z) - Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
We revisit the problem of sparse linear regression in the local differential privacy (LDP) model.
We propose an innovative NLDP algorithm, the very first of its kind for the problem.
Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
arXiv Detail & Related papers (2023-10-11T10:34:52Z) - Almost Linear Constant-Factor Sketching for $\ell_1$ and Logistic
Regression [74.28017932704704]
We improve upon previous oblivious sketching and turnstile streaming results for $ell_1$ and logistic regression.
We also give a tradeoff that yields a $1+varepsilon$ approximation in input sparsity time.
Our sketch can be extended to approximate a regularized version of logistic regression where the data-dependent regularizer corresponds to the variance of the individual logistic losses.
arXiv Detail & Related papers (2023-03-31T18:12:33Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Locally Differentially Private Reinforcement Learning for Linear Mixture
Markov Decision Processes [78.27542864367821]
Reinforcement learning (RL) algorithms can be used to provide personalized services, which rely on users' private and sensitive data.
To protect the users' privacy, privacy-preserving RL algorithms are in demand.
We propose a novel $(varepsilon, delta)$-LDP algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture MDPs.
arXiv Detail & Related papers (2021-10-19T17:44:09Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.