Nearly Optimal Differentially Private ReLU Regression
- URL: http://arxiv.org/abs/2503.06009v1
- Date: Sat, 08 Mar 2025 02:09:47 GMT
- Title: Nearly Optimal Differentially Private ReLU Regression
- Authors: Meng Ding, Mingxi Lei, Shaowei Wang, Tianhang Zheng, Di Wang, Jinhui Xu,
- Abstract summary: We investigate one of the most fundamental non learning problems, ReLU regression, in the Differential Privacy (DP) model.<n>We show that it is possible to achieve an upper bound of $TildeO(fracd2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 varepsilon2N2 vareps
- Score: 18.599299269974498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate one of the most fundamental nonconvex learning problems, ReLU regression, in the Differential Privacy (DP) model. Previous studies on private ReLU regression heavily rely on stringent assumptions, such as constant bounded norms for feature vectors and labels. We relax these assumptions to a more standard setting, where data can be i.i.d. sampled from $O(1)$-sub-Gaussian distributions. We first show that when $\varepsilon = \tilde{O}(\sqrt{\frac{1}{N}})$ and there is some public data, it is possible to achieve an upper bound of $\Tilde{O}(\frac{d^2}{N^2 \varepsilon^2})$ for the excess population risk in $(\epsilon, \delta)$-DP, where $d$ is the dimension and $N$ is the number of data samples. Moreover, we relax the requirement of $\epsilon$ and public data by proposing and analyzing a one-pass mini-batch Generalized Linear Model Perceptron algorithm (DP-MBGLMtron). Additionally, using the tracing attack argument technique, we demonstrate that the minimax rate of the estimation error for $(\varepsilon, \delta)$-DP algorithms is lower bounded by $\Omega(\frac{d^2}{N^2 \varepsilon^2})$. This shows that DP-MBGLMtron achieves the optimal utility bound up to logarithmic factors. Experiments further support our theoretical results.
Related papers
- Better Locally Private Sparse Estimation Given Multiple Samples Per User [2.9562742331218725]
We investigate user-level locally differentially private sparse linear regression.
We show that with $n$ users each contributing $m$ samples, the linear dependency of dimension $d$ can be eliminated.
We propose a framework that first selects candidate variables and then conducts estimation in the narrowed low-dimensional space.
arXiv Detail & Related papers (2024-08-08T08:47:20Z) - Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
We study person-level differentially private mean estimation in the case where each person holds multiple samples.
We give computationally efficient algorithms under approximate-DP and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP.
arXiv Detail & Related papers (2024-05-30T18:20:35Z) - Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
We revisit the problem of sparse linear regression in the local differential privacy (LDP) model.
We propose an innovative NLDP algorithm, the very first of its kind for the problem.
Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
arXiv Detail & Related papers (2023-10-11T10:34:52Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - (Nearly) Optimal Private Linear Regression via Adaptive Clipping [22.639650869444395]
We study the problem of differentially private linear regression where each data point is sampled from a fixed sub-Gaussian style distribution.
We propose and analyze a one-pass mini-batch gradient descent method (DP-AMBSSGD) where points in each iteration are sampled without replacement.
arXiv Detail & Related papers (2022-07-11T08:04:46Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.