論文の概要: Vignat: Vulnerability identification by learning code semantics via
graph attention networks
- arxiv url: http://arxiv.org/abs/2310.20067v1
- Date: Mon, 30 Oct 2023 22:31:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 17:11:24.013966
- Title: Vignat: Vulnerability identification by learning code semantics via
graph attention networks
- Title(参考訳): Vignat: グラフアテンションネットワークによるコードセマンティクスの学習による脆弱性識別
- Authors: Shuo Liu and Gail Kaiser
- Abstract要約: コードのグラフレベルのセマンティック表現を学習することで脆弱性を識別する新しいアテンションベースのフレームワークである textitVignat を提案する。
コードプロパティグラフ(CPG)を粒度で表現し,脆弱性検出にグラフアテンションネットワーク(GAT)を用いる。
- 参考スコア(独自算出の注目度): 6.433019933439612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vulnerability identification is crucial to protect software systems from
attacks for cyber-security. However, huge projects have more than millions of
lines of code, and the complex dependencies make it hard to carry out
traditional static and dynamic methods. Furthermore, the semantic structure of
various types of vulnerabilities differs greatly and may occur simultaneously,
making general rule-based methods difficult to extend. In this paper, we
propose \textit{Vignat}, a novel attention-based framework for identifying
vulnerabilities by learning graph-level semantic representations of code. We
represent codes with code property graphs (CPGs) in fine grain and use graph
attention networks (GATs) for vulnerability detection. The results show that
Vignat is able to achieve $57.38\%$ accuracy on reliable datasets derived from
popular C libraries. Furthermore, the interpretability of our GATs provides
valuable insights into vulnerability patterns.
- Abstract(参考訳): 脆弱性の識別は、サイバーセキュリティ攻撃からソフトウェアシステムを保護するために不可欠である。
しかし、巨大なプロジェクトには数百万行以上のコードがあり、複雑な依存関係によって従来の静的および動的メソッドの実行が困難になります。
さらに、さまざまな脆弱性のセマンティクス構造は大きく異なり、同時に発生する可能性があるため、一般的なルールベースのメソッドの拡張が難しくなる。
本稿では,コードのグラフレベルのセマンティック表現を学習することで脆弱性を識別する新しいアテンションベースのフレームワークである「textit{Vignat}」を提案する。
我々は、コードプロパティグラフ(cpgs)を細かい粒度で表現し、脆弱性検出にグラフアテンションネットワーク(gats)を使用する。
結果は、人気のあるcライブラリから派生した信頼できるデータセットに対して、vignatが57.38\%の精度を達成できることを示している。
さらに、GATの解釈可能性によって、脆弱性パターンに関する貴重な洞察が得られます。
関連論文リスト
- Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINERは、粗いレベルの脆弱なコードスニペットから脆弱性クリティカルなコード行を見つけるためのツールである。
C/C++の一般的な8つの脆弱性に対して、90%の精度で脆弱性をトリガするコードステートメントにフラグを付けることができる。
論文 参考訳(メタデータ) (2024-01-05T10:15:04Z) - Sequential Graph Neural Networks for Source Code Vulnerability
Identification [5.582101184758527]
我々は,C/C++ソースコードの脆弱性データセットを適切にキュレートし,モデルの開発を支援する。
また,多数のコード意味表現を学習するための連続グラフニューラルネットワーク(SEGNN)という,グラフニューラルネットワークに基づく学習フレームワークを提案する。
グラフ分類設定における2つのデータセットと4つのベースライン手法による評価は、最先端の結果を示している。
論文 参考訳(メタデータ) (2023-05-23T17:25:51Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Learn to Propagate Reliably on Noisy Affinity Graphs [69.97364913330989]
近年の研究では,ラベル伝搬によるラベル付きデータの利用により,ラベル付けコストを大幅に削減できることが示されている。
ラベルを確実に伝播する方法、特に未知の外れ値を持つデータセットでは、依然として未解決の問題である。
本稿では,大規模実世界のデータ上でラベルを確実に伝播させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-17T07:55:59Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Learning to map source code to software vulnerability using
code-as-a-graph [67.62847721118142]
セキュリティの観点からソースコードのニュアンス学習におけるグラフニューラルネットワークの適用性について検討する。
我々は,既存のコード・アズ・フォトや線形シーケンスの符号化手法よりも,脆弱性検出に有効なコード・アズ・グラフの符号化法を示す。
論文 参考訳(メタデータ) (2020-06-15T16:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。