論文の概要: Evaluating Neural Language Models as Cognitive Models of Language
Acquisition
- arxiv url: http://arxiv.org/abs/2310.20093v1
- Date: Tue, 31 Oct 2023 00:16:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 16:57:58.338259
- Title: Evaluating Neural Language Models as Cognitive Models of Language
Acquisition
- Title(参考訳): 言語獲得の認知モデルとしての言語モデルの評価
- Authors: H\'ector Javier V\'azquez Mart\'inez, Annika Lea Heuser, Charles Yang,
Jordan Kodner
- Abstract要約: 我々は、ニューラルネットワークモデルの構文能力を評価するための最も顕著なベンチマークは、十分に厳密でないかもしれないと論じる。
小規模データモデリングによる子言語習得を訓練すると、LMは単純なベースラインモデルで容易にマッチングできる。
子どもの言語習得に関する実証的研究と、LMをよりよく結びつけるための提案をまとめて締めくくった。
- 参考スコア(独自算出の注目度): 4.779196219827507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of neural language models (LMs) on many technological tasks has
brought about their potential relevance as scientific theories of language
despite some clear differences between LM training and child language
acquisition. In this paper we argue that some of the most prominent benchmarks
for evaluating the syntactic capacities of LMs may not be sufficiently
rigorous. In particular, we show that the template-based benchmarks lack the
structural diversity commonly found in the theoretical and psychological
studies of language. When trained on small-scale data modeling child language
acquisition, the LMs can be readily matched by simple baseline models. We
advocate for the use of the readily available, carefully curated datasets that
have been evaluated for gradient acceptability by large pools of native
speakers and are designed to probe the structural basis of grammar
specifically. On one such dataset, the LI-Adger dataset, LMs evaluate sentences
in a way inconsistent with human language users. We conclude with suggestions
for better connecting LMs with the empirical study of child language
acquisition.
- Abstract(参考訳): 多くの技術的タスクにおけるニューラル言語モデル(LM)の成功は、LMトレーニングと子言語習得の間に明らかな違いがあるにもかかわらず、言語科学理論としての可能性をもたらした。
本稿では,LMの統語能力を評価する上で最も顕著なベンチマークのいくつかは,十分に厳密でないかもしれないと論じる。
特に,テンプレートベースのベンチマークでは,言語の理論的,心理学的な研究で一般的に見られる構造的多様性が欠如していることが示された。
小規模データモデリングによる子言語習得を訓練すると、LMは単純なベースラインモデルで容易にマッチングできる。
本研究は, 言語話者の話者プールの勾配受容性を評価し, 文法の構造的基礎を特に探究する目的で, 容易に利用できる, 慎重に計算されたデータセットの利用を提唱する。
そのようなデータセット、li-adgerデータセット、lmsは、人間の言語ユーザと一貫性のない方法で文を評価する。
子どもの言語習得に関する実証的研究と、LMをよりよく結びつけることを提案する。
関連論文リスト
- From Babbling to Fluency: Evaluating the Evolution of Language Models in Terms of Human Language Acquisition [6.617999710257379]
本稿では,LMの能力を評価するための3段階のフレームワークを提案する。
言語研究の手法を用いて, LMの生成能力を評価する。
論文 参考訳(メタデータ) (2024-10-17T06:31:49Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
GPT-2 と RoBERTa モデルを英語の子供指向音声の29万語で学習する。
子どものトレーニングデータのグローバルな発達順序付けやローカルな談話順序付けが、他のデータセットと比較して高いパフォーマンスを支えているかどうかを検証する。
これらの結果は、より良いデータから進むのではなく、子供の学習アルゴリズムが現在の言語モデリング技術よりもはるかにデータ効率が高いという仮説を支持している。
論文 参考訳(メタデータ) (2024-08-07T08:18:51Z) - Language Representations Can be What Recommenders Need: Findings and Potentials [57.90679739598295]
先進的なLM表現から線形にマッピングされた項目表現は、より優れたレコメンデーション性能が得られることを示す。
この結果は、先進言語表現空間と効果的な項目表現空間との同型性を示唆している。
本研究は,自然言語処理とリコメンデーションシステムコミュニティの両方に刺激を与える言語モデリングと行動モデリングの関連性を強調した。
論文 参考訳(メタデータ) (2024-07-07T17:05:24Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
本研究では,機械翻訳パイプラインの自動化の一環として,事前学習された大言語モデル(LLM)が低リソース言語から高リソース言語への翻訳を指示する際の文脈内学習能力について検討する。
我々は南ケチュアをスペイン語に翻訳する一連の実験を行い、デジタル化された教育材料と平行コーパスの制約されたデータベースから得られた様々な種類の文脈の情報量について検討する。
論文 参考訳(メタデータ) (2024-06-21T20:02:22Z) - What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages [78.1866280652834]
大規模言語モデル (LM) は文字列上の分布である。
RNNとTransformer LMによる規則的LM(RLM)の学習性について検討する。
RNNとトランスフォーマーの双方において,RLMランクの複雑さは強く,学習可能性の有意な予測因子であることが判明した。
論文 参考訳(メタデータ) (2024-06-06T17:34:24Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - A systematic investigation of learnability from single child linguistic input [12.279543223376935]
言語モデル(LM)は言語的に一貫性のあるテキストを生成するのに顕著な能力を示した。
しかし、これらのモデルのトレーニングデータと、子供が受ける言語的入力との間には、大きなギャップがある。
本研究は, 一人の子どもの言語入力のサブセットに基づいて, LMを訓練することに焦点を当てた。
論文 参考訳(メタデータ) (2024-02-12T18:58:58Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。