論文の概要: A systematic investigation of learnability from single child linguistic input
- arxiv url: http://arxiv.org/abs/2402.07899v2
- Date: Fri, 10 May 2024 18:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 00:13:55.196498
- Title: A systematic investigation of learnability from single child linguistic input
- Title(参考訳): シングルチャイルド言語入力からの学習可能性に関する体系的研究
- Authors: Yulu Qin, Wentao Wang, Brenden M. Lake,
- Abstract要約: 言語モデル(LM)は言語的に一貫性のあるテキストを生成するのに顕著な能力を示した。
しかし、これらのモデルのトレーニングデータと、子供が受ける言語的入力との間には、大きなギャップがある。
本研究は, 一人の子どもの言語入力のサブセットに基づいて, LMを訓練することに焦点を当てた。
- 参考スコア(独自算出の注目度): 12.279543223376935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) have demonstrated remarkable proficiency in generating linguistically coherent text, sparking discussions about their relevance to understanding human language learnability. However, a significant gap exists between the training data for these models and the linguistic input a child receives. LMs are typically trained on data that is orders of magnitude larger and fundamentally different from child-directed speech (Warstadt and Bowman, 2022; Warstadt et al., 2023; Frank, 2023a). Addressing this discrepancy, our research focuses on training LMs on subsets of a single child's linguistic input. Previously, Wang, Vong, Kim, and Lake (2023) found that LMs trained in this setting can form syntactic and semantic word clusters and develop sensitivity to certain linguistic phenomena, but they only considered LSTMs and simpler neural networks trained from just one single-child dataset. Here, to examine the robustness of learnability from single-child input, we systematically train six different model architectures on five datasets (3 single-child and 2 baselines). We find that the models trained on single-child datasets showed consistent results that matched with previous work, underscoring the robustness of forming meaningful syntactic and semantic representations from a subset of a child's linguistic input.
- Abstract(参考訳): 言語モデル(LM)は言語的に一貫性のあるテキストを生成するのに顕著な習熟度を示し、人間の言語学習性を理解することとの関連性について議論を呼んだ。
しかし、これらのモデルのトレーニングデータと、子供が受ける言語的入力との間には、大きなギャップがある。
LMは一般的に、子供指向の音声(Warstadt and Bowman, 2022; Warstadt et al , 2023; Frank, 2023a)と大きく、根本的に異なるデータに基づいて訓練される。
本研究は, 一人の子どもの言語入力のサブセットに基づいて, LMを訓練することに焦点を当てた。
以前、Wang, Vong, Kim, and Lake (2023) は、この設定で訓練されたLMが構文的および意味的な単語クラスタを形成し、特定の言語現象に対する感受性を発達させることを発見した。
そこで本研究では,シングルチャイルド入力からの学習可能性の堅牢性を検討するために,5つのデータセット(シングルチャイルドと2つのベースライン)で6種類のモデルアーキテクチャを体系的に学習する。
その結果, シングルチャイルドデータセットを用いて学習したモデルは, 従来の研究と一貫した結果を示し, 子どもの言語入力のサブセットから意味的な構文的・意味的表現を形成するという頑健さを浮き彫りにした。
関連論文リスト
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
GPT-2 と RoBERTa モデルを英語の子供指向音声の29万語で学習する。
子どものトレーニングデータのグローバルな発達順序付けやローカルな談話順序付けが、他のデータセットと比較して高いパフォーマンスを支えているかどうかを検証する。
これらの結果は、より良いデータから進むのではなく、子供の学習アルゴリズムが現在の言語モデリング技術よりもはるかにデータ効率が高いという仮説を支持している。
論文 参考訳(メタデータ) (2024-08-07T08:18:51Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
我々は、文脈言語学習(ICLL)において、私たちが用語する新しいモデル問題群(英語版)のレンズを通してICLを研究する。
我々は,通常のICLLタスクにおいて,多種多様なニューラルシーケンスモデルを評価する。
論文 参考訳(メタデータ) (2024-01-23T18:59:21Z) - Evaluating Neural Language Models as Cognitive Models of Language
Acquisition [4.779196219827507]
我々は、ニューラルネットワークモデルの構文能力を評価するための最も顕著なベンチマークは、十分に厳密でないかもしれないと論じる。
小規模データモデリングによる子言語習得を訓練すると、LMは単純なベースラインモデルで容易にマッチングできる。
子どもの言語習得に関する実証的研究と、LMをよりよく結びつけるための提案をまとめて締めくくった。
論文 参考訳(メタデータ) (2023-10-31T00:16:17Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Word Acquisition in Neural Language Models [0.38073142980733]
ニューラルネットワークモデルは,学習中に個々の単語を習得し,学習曲線を抽出し,600以上の単語の獲得年齢を推定する。
子どもや言語モデルでは, 具体性, 単語長, 語彙クラスの影響が顕著に異なることがわかった。
論文 参考訳(メタデータ) (2021-10-05T23:26:16Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Recurrent babbling: evaluating the acquisition of grammar from limited
input data [0.30458514384586405]
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、生の言語入力から構文の様々な側面を捉えることが示されている。
本稿では,子育て入力の現実的な大きさのサブセットに対して,LSTM(Long Short-Term Memory Network)をトレーニングすることで,この状況を改善する。
論文 参考訳(メタデータ) (2020-10-09T15:30:05Z) - Information-Theoretic Probing for Linguistic Structure [74.04862204427944]
本稿では,相互情報を推定するための情報理論による探索運用手法を提案する。
我々は,NLP研究でしばしば不足している10の型的多様言語について評価した。
論文 参考訳(メタデータ) (2020-04-07T01:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。