論文の概要: Refined Equivalent Pinhole Model for Large-scale 3D Reconstruction from
Spaceborne CCD Imagery
- arxiv url: http://arxiv.org/abs/2310.20117v1
- Date: Tue, 31 Oct 2023 01:30:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 16:45:14.557381
- Title: Refined Equivalent Pinhole Model for Large-scale 3D Reconstruction from
Spaceborne CCD Imagery
- Title(参考訳): 宇宙空間CCD画像からの大規模3次元再構成のための等価ピンホールモデル
- Authors: Hong Danyang, Yu Anzhu, Ji Song, Cao Xuefeng, Quan Yujun, Guo Wenyue,
Qiu Chunping
- Abstract要約: 線状電荷結合衛星画像のための大規模地球表面再構成パイプラインを提案する。
その結果,再現精度は画像サイズに比例することがわかった。
画像改善モデルは再建の精度と完全性を大幅に向上させた。
- 参考スコア(独自算出の注目度): 1.4019041243188557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we present a large-scale earth surface reconstruction pipeline
for linear-array charge-coupled device (CCD) satellite imagery. While
mainstream satellite image-based reconstruction approaches perform
exceptionally well, the rational functional model (RFM) is subject to several
limitations. For example, the RFM has no rigorous physical interpretation and
differs significantly from the pinhole imaging model; hence, it cannot be
directly applied to learning-based 3D reconstruction networks and to more novel
reconstruction pipelines in computer vision. Hence, in this study, we introduce
a method in which the RFM is equivalent to the pinhole camera model (PCM),
meaning that the internal and external parameters of the pinhole camera are
used instead of the rational polynomial coefficient parameters. We then derive
an error formula for this equivalent pinhole model for the first time,
demonstrating the influence of the image size on the accuracy of the
reconstruction. In addition, we propose a polynomial image refinement model
that minimizes equivalent errors via the least squares method. The experiments
were conducted using four image datasets: WHU-TLC, DFC2019, ISPRS-ZY3, and GF7.
The results demonstrated that the reconstruction accuracy was proportional to
the image size. Our polynomial image refinement model significantly enhanced
the accuracy and completeness of the reconstruction, and achieved more
significant improvements for larger-scale images.
- Abstract(参考訳): 本研究では,線量結合デバイス(CCD)衛星画像のための大規模地球表面再構成パイプラインを提案する。
主流の衛星画像に基づく再構成手法は極めてよく機能するが、有理機能モデル(RFM)にはいくつかの制限がある。
例えば、rfmは厳密な物理的解釈を持たず、ピンホールイメージングモデルとは大きく異なるため、学習ベースの3d再構成ネットワークやコンピュータビジョンにおけるより新しい再構築パイプラインに直接適用することはできない。
そこで本研究では, RFM をピンホールカメラモデル (PCM) と等価とし, ピンホールカメラの内部および外部パラメータを有理多項式パラメータの代わりに用いる方法を提案する。
次に,この等価ピンホールモデルの誤差式を初めて導出し,画像サイズが復元精度に及ぼす影響を示す。
さらに,最小二乗法により等価誤差を最小限に抑える多項式画像補正モデルを提案する。
実験は、WHU-TLC、DFC2019、ISPRS-ZY3、GF7の4つの画像データセットを用いて行われた。
その結果,再構成精度は画像サイズに比例することがわかった。
多項式画像改良モデルは,復元の精度と完全性を大幅に向上させ,大規模画像の大幅な改善を実現した。
関連論文リスト
- GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - Imaging Signal Recovery Using Neural Network Priors Under Uncertain Forward Model Parameters [0.7724713939814069]
逆イメージング問題(IIP)は様々な用途で発生し、圧縮された測定値から画像の再構成が主な目的である。
本稿では,ニューラルネットワークを前に使用することで,一般的なIPソリューションと互換性のある新しいモーメント・アグリゲーション(MA)フレームワークを提案する。
理論的には、既知のフォワードモデルパラメータの下での再構成に類似した複雑さを持つMAフレームワークの収束を実証する。
論文 参考訳(メタデータ) (2024-05-05T14:12:48Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
論文 参考訳(メタデータ) (2024-02-24T13:42:34Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Deep learning of multi-resolution X-Ray micro-CT images for multi-scale
modelling [0.0]
本研究では3次元拡張深部超解像(EDSR)畳み込みニューラルネットワークを開発し,大規模空間スケールで高分解能データを生成する。
我々は,テキスト解析,セグメンテーション動作,多相流シミュレーション(PNM)を用いてネットワークを検証した。
EDSR生成モデルは、不均一性の存在下での実験挙動を予測するための基礎LRモデルよりも精度が高い。
論文 参考訳(メタデータ) (2021-11-01T21:49:22Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
回帰に基づく手法は最近、単眼画像からヒトのメッシュを再構成する有望な結果を示した。
パラメータの小さな偏差は、推定メッシュと画像のエビデンスの間に顕著な不一致を引き起こす可能性がある。
本稿では,特徴ピラミッドを活用し,予測パラメータを補正するために,ピラミッドメッシュアライメントフィードバック(pymaf)ループを提案する。
論文 参考訳(メタデータ) (2021-03-30T17:07:49Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。