論文の概要: A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation
- arxiv url: http://arxiv.org/abs/2402.15815v1
- Date: Sat, 24 Feb 2024 13:42:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 16:53:52.914259
- Title: A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation
- Title(参考訳): 材料構造3次元再構成のための生成的機械学習モデルと性能評価
- Authors: Yilin Zheng and Zhigong Song
- Abstract要約: 2次元から3次元への次元展開は、現在の技術的観点から非常に難しい逆問題と見なされている。
U-netのマルチスケール特性とGANの生成能力を統合する新しい生成モデルが提案されている。
さらに、画像正規化損失とワッサーシュタイン距離損失を組み合わせることにより、モデルの精度をさらに向上する。
- 参考スコア(独自算出の注目度): 4.169915659794567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction of 3D microstructures from 2D slices is considered to hold
significant value in predicting the spatial structure and physical properties
of materials.The dimensional extension from 2D to 3D is viewed as a highly
challenging inverse problem from the current technological
perspective.Recently,methods based on generative adversarial networks have
garnered widespread attention.However,they are still hampered by numerous
limitations,including oversimplified models,a requirement for a substantial
number of training samples,and difficulties in achieving model convergence
during training.In light of this,a novel generative model that integrates the
multiscale properties of U-net with and the generative capabilities of GAN has
been proposed.Based on this,the innovative construction of a multi-scale
channel aggregation module,a multi-scale hierarchical feature aggregation
module and a convolutional block attention mechanism can better capture the
properties of the material microstructure and extract the image information.The
model's accuracy is further improved by combining the image regularization loss
with the Wasserstein distance loss.In addition,this study utilizes the
anisotropy index to accurately distinguish the nature of the image,which can
clearly determine the isotropy and anisotropy of the image.It is also the first
time that the generation quality of material samples from different domains is
evaluated and the performance of the model itself is compared.The experimental
results demonstrate that the present model not only shows a very high
similarity between the generated 3D structures and real samples but is also
highly consistent with real data in terms of statistical data analysis.
- Abstract(参考訳): The reconstruction of 3D microstructures from 2D slices is considered to hold significant value in predicting the spatial structure and physical properties of materials.The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.Recently,methods based on generative adversarial networks have garnered widespread attention.However,they are still hampered by numerous limitations,including oversimplified models,a requirement for a substantial number of training samples,and difficulties in achieving model convergence during training.In light of this,a novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.Based on this,the innovative construction of a multi-scale channel aggregation module,a multi-scale hierarchical feature aggregation module and a convolutional block attention mechanism can better capture the properties of the material microstructure and extract the image information.The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.In addition,this study utilizes the anisotropy index to accurately distinguish the nature of the image,which can clearly determine the isotropy and anisotropy of the image.It is also the first time that the generation quality of material samples from different domains is evaluated and the performance of the model itself is compared.The experimental results demonstrate that the present model not only shows a very high similarity between the generated 3D structures and real samples but is also highly consistent with real data in terms of statistical data analysis.
関連論文リスト
- MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
本稿では,多視点ガウス再構成器を備えた一般軽量ガウス再構成モデルMVGambaを紹介する。
オフザディテールのマルチビュー拡散モデルを統合することで、MVGambaは単一の画像、スパース画像、テキストプロンプトから3D生成タスクを統一する。
実験により、MVGambaは、すべての3Dコンテンツ生成シナリオで最先端のベースラインを約0.1タイムのモデルサイズで上回ります。
論文 参考訳(メタデータ) (2024-06-10T15:26:48Z) - InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models [66.83681825842135]
InstantMeshは、単一のイメージからインスタント3Dメッシュを生成するためのフィードフォワードフレームワークである。
最新世代の品質とトレーニングのスケーラビリティが特徴だ。
InstantMeshのコード、重み、デモをすべてリリースし、3D生成AIのコミュニティに多大な貢献ができることを意図しています。
論文 参考訳(メタデータ) (2024-04-10T17:48:37Z) - Denoising diffusion-based synthetic generation of three-dimensional (3D)
anisotropic microstructures from two-dimensional (2D) micrographs [0.0]
条件拡散に基づく生成モデル(DGM)に基づく異方性組織再構築のための枠組みを提案する。
提案するフレームワークは,複数の2次元条件付きDGMの空間的接続を伴い,それぞれが3つの異なる平面に対して2次元マイクロ構造サンプルを生成するように訓練されている。
その結果, このフレームワークは材料相の統計分布だけでなく, 3次元空間における材料特性も再現可能であることがわかった。
論文 参考訳(メタデータ) (2023-12-13T01:36:37Z) - Using convolutional neural networks for stereological characterization
of 3D hetero-aggregates based on synthetic STEM data [0.0]
パラメトリックな3Dモデルが提示され、そこから多数の仮想ヘテロアグリゲートが生成される。
仮想構造は、仮想走査透過電子顕微鏡(STEM)画像を生成するために物理シミュレーションツールに渡される。
畳み込みニューラルネットワークは、2次元STEM画像からヘテロアグリゲートの3次元構造を予測するために訓練される。
論文 参考訳(メタデータ) (2023-10-27T22:49:08Z) - Multi-plane denoising diffusion-based dimensionality expansion for
2D-to-3D reconstruction of microstructures with harmonized sampling [0.0]
本研究では,マイクロ3Diffと呼ばれる2次元から3次元の微細構造再構築のための新しい枠組みを提案する。
具体的には、この手法は2Dサンプルの生成に事前訓練されたDGMのみを必要とする。
DGMの逆マルコフ鎖からの偏差に対処するために、調和サンプリング法を開発した。
論文 参考訳(メタデータ) (2023-08-27T07:57:25Z) - Reference-Free Isotropic 3D EM Reconstruction using Diffusion Models [8.590026259176806]
本稿では、参照データや劣化過程に関する事前知識の制限を克服する拡散モデルに基づくフレームワークを提案する。
提案手法では, 2次元拡散モデルを用いて連続的に3次元ボリュームを再構成し, 高精度なサンプルデータに適している。
論文 参考訳(メタデータ) (2023-08-03T07:57:02Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
拡散確率場(DPF)は、距離空間上で定義された連続関数の分布をモデル化する。
本稿では,局所構造学習に着目したビューワイズサンプリングアルゴリズムによる新しいモデルを提案する。
モデルは、複数のモダリティを統一しながら、高解像度のデータを生成するためにスケールすることができる。
論文 参考訳(メタデータ) (2023-05-24T03:32:03Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
自己回帰(AR)モデルはグリッド空間の関節分布をモデル化することにより2次元画像生成において印象的な結果を得た。
本稿では3次元形状生成のための改良された自己回帰モデル(ImAM)を提案する。
論文 参考訳(メタデータ) (2023-03-26T12:03:18Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。