論文の概要: Understanding and Visualizing Droplet Distributions in Simulations of
Shallow Clouds
- arxiv url: http://arxiv.org/abs/2310.20168v1
- Date: Tue, 31 Oct 2023 04:25:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 16:35:14.376016
- Title: Understanding and Visualizing Droplet Distributions in Simulations of
Shallow Clouds
- Title(参考訳): 浅層雲シミュレーションにおける液滴分布の理解と可視化
- Authors: Justus C. Will, Andrea M. Jenney, Kara D. Lamb, Michael S. Pritchard,
Colleen Kaul, Po-Lun Ma, Kyle Pressel, Jacob Shpund, Marcus van Lier-Walqui,
Stephan Mandt
- Abstract要約: 我々は,ドロップレットサイズを整理する上で,新規かつ直感的に可視化する。
液滴スペクトルの進化はエアロゾル準位に類似しているが、異なる速度で起こる。
この類似性は、降水開始過程は、開始時期の変動にもかかわらず類似していることを示している。
- 参考スコア(独自算出の注目度): 13.200838744804942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thorough analysis of local droplet-level interactions is crucial to better
understand the microphysical processes in clouds and their effect on the global
climate. High-accuracy simulations of relevant droplet size distributions from
Large Eddy Simulations (LES) of bin microphysics challenge current analysis
techniques due to their high dimensionality involving three spatial dimensions,
time, and a continuous range of droplet sizes. Utilizing the compact latent
representations from Variational Autoencoders (VAEs), we produce novel and
intuitive visualizations for the organization of droplet sizes and their
evolution over time beyond what is possible with clustering techniques. This
greatly improves interpretation and allows us to examine aerosol-cloud
interactions by contrasting simulations with different aerosol concentrations.
We find that the evolution of the droplet spectrum is similar across aerosol
levels but occurs at different paces. This similarity suggests that
precipitation initiation processes are alike despite variations in onset times.
- Abstract(参考訳): 局所的な液滴レベルの相互作用の徹底的な解析は、雲のミクロフィジカルな過程とその地球気候への影響をよりよく理解するために重要である。
binマイクロフィジカルの大規模渦シミュレーション(les)による関連する液滴径分布の高精度シミュレーションは,空間寸法,時間,液滴径の連続範囲が3次元であるため,現在の解析手法に挑戦する。
可変オートエンコーダ(vaes)からのコンパクトな潜在表現を利用することで,分散手法で実現可能な範囲を超えて,液滴サイズの組織化とその進化を,新規かつ直感的に可視化する。
これにより解釈が大幅に向上し,異なるエアロゾル濃度のシミュレーションを対比することにより,エアロゾルとクラウドの相互作用を調べることができる。
液滴スペクトルの進化はエアロゾル準位に類似しているが、異なる速度で起こる。
この類似性は、降水開始過程が開始時刻の変動にもかかわらず類似していることを示唆している。
関連論文リスト
- Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics [39.412937539709844]
分子動力学における空間的・時間的多スケール相互作用を共同でモデル化する新しい枠組みを提案する。
MD17データセット上で本モデルを評価し,最先端のベースラインに対して一貫した性能向上を示す。
論文 参考訳(メタデータ) (2024-11-03T15:10:48Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold [83.18058549195855]
自然科学における複数の過程は、確率密度のワッサーシュタイン多様体上のベクトル場として表さなければならない。
特に、疾患の発生とその治療反応が患者固有の細胞の微小環境に依存するパーソナライズド医療において重要である。
本稿では,これらのベクトル場をワッサーシュタイン多様体上で積分するメタフローマッチング(Meta Flow Matching, MFM)を提案する。
論文 参考訳(メタデータ) (2024-08-26T20:05:31Z) - Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
本研究の目的は, 大気汚染の健康影響を学習する能力を最大限に活用するために, データのない場所での被験者の大気汚染の予測を行うことである。
これらの課題を、米国国家PM2.5亜種規制データの硫黄(S)と、シアトルの交通関連大気汚染データセットの超微粒子(UFP)の2つのデータセットで解決する。
私たちの重要な貢献は、幅広いモデルの解釈可能かつ同等の尺度に導かれる、変数の重要度に対する一対一のアプローチである。
論文 参考訳(メタデータ) (2024-06-04T05:51:36Z) - MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations [8.71735078449217]
本稿ではメタラーニングを活用した統一的なダウンスケーリング手法を提案する。
ERA5, GFSから温度, 風, 表面圧力, 総降水量からなる変数を訓練した。
提案手法は, 対流降水量, 電位, エネルギー高さ, 湿度CFS, S2S, CMIP6の時間スケールに拡張可能である。
論文 参考訳(メタデータ) (2024-04-26T06:31:44Z) - Ensemble flow reconstruction in the atmospheric boundary layer from
spatially limited measurements through latent diffusion models [0.32955181898067526]
機械学習技術は、従来、標準的な流体力学問題において、観測されていない流れ領域を再構築してきた。
これらの技術は3次元大気境界層ではまだ実証されていない。
論文 参考訳(メタデータ) (2023-03-01T21:55:10Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
データから酸素抽出率(OEF)と脱酸素血液量(DBV)をより明瞭に決定する。
既存の推論手法では、DBVを過大評価しながら非常にノイズの多い、過小評価されたEFマップが得られる傾向にある。
本研究は, OEFとDBVの可算分布を推定できる確率論的機械学習手法について述べる。
論文 参考訳(メタデータ) (2022-03-11T10:47:16Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
集合ニュートリノ振動は、天体物理学的な設定においてレプトンのフレーバーを輸送する上で重要な役割を担っている。
高速振動を呈する単純多角ジオメトリーにおける平衡外フレーバーのフルダイナミクスについて検討した。
我々はこれらの高速集団モードが同じ動的相転移によって生成されることを示す。
論文 参考訳(メタデータ) (2022-03-05T17:00:06Z) - Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs [15.695330558298705]
大気科学者は、高解像度で嵐を解消するシミュレーションを実行し、キロメートル規模の気象の詳細を捉えます。
本稿では, 垂直風速, 温度, 水蒸気情報の空間配列を, VAEアーキテクチャの3つの「チャネル」として結合的に埋め込み, データ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2021-12-01T06:23:07Z) - Designing Air Flow with Surrogate-assisted Phenotypic Niching [117.44028458220427]
品質多様性アルゴリズムであるサロゲート支援表現型ニッチを導入する。
計算に高価な表現型特徴を用いることで、大規模で多様な行動群を発見することができる。
本研究では,2次元流体力学最適化問題における気流の種類を明らかにする。
論文 参考訳(メタデータ) (2021-05-10T10:45:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。