論文の概要: Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics
- arxiv url: http://arxiv.org/abs/2411.01600v1
- Date: Sun, 03 Nov 2024 15:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:03.408701
- Title: Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics
- Title(参考訳): グラフフーリエニューラルネットワーク:分子動力学における空間的・時間的マルチスケールのブリッジ
- Authors: Fang Sun, Zijie Huang, Haixin Wang, Yadi Cao, Xiao Luo, Wei Wang, Yizhou Sun,
- Abstract要約: 分子動力学における空間的・時間的多スケール相互作用を共同でモデル化する新しい枠組みを提案する。
MD17データセット上で本モデルを評価し,最先端のベースラインに対して一貫した性能向上を示す。
- 参考スコア(独自算出の注目度): 39.412937539709844
- License:
- Abstract: Molecular dynamics simulations are crucial for understanding complex physical, chemical, and biological processes at the atomic level. However, accurately capturing interactions across multiple spatial and temporal scales remains a significant challenge. We present a novel framework that jointly models spatial and temporal multiscale interactions in molecular dynamics. Our approach leverages Graph Fourier Transforms to decompose molecular structures into different spatial scales and employs Neural Ordinary Differential Equations to model the temporal dynamics in a curated manner influenced by the spatial modes. This unified framework links spatial structures with temporal evolution in a flexible manner, enabling more accurate and comprehensive simulations of molecular systems. We evaluate our model on the MD17 dataset, demonstrating consistent performance improvements over state-of-the-art baselines across multiple molecules, particularly under challenging conditions such as irregular timestep sampling and long-term prediction horizons. Ablation studies confirm the significant contributions of both spatial and temporal multiscale modeling components. Our method advances the simulation of complex molecular systems, potentially accelerating research in computational chemistry, drug discovery, and materials science.
- Abstract(参考訳): 分子動力学シミュレーションは、複雑な物理的、化学的、生物学的プロセスの原子レベルでの理解に不可欠である。
しかし、複数の空間的スケールと時間的スケールの相互作用を正確に捉えることは重要な課題である。
分子動力学における空間的・時間的多スケール相互作用を共同でモデル化する新しい枠組みを提案する。
提案手法では,グラフフーリエ変換を用いて分子構造を異なる空間スケールに分解し,時間的ダイナミクスを時間的モードの影響でモデル化するニューラル正規微分方程式を用いる。
この統合された枠組みは、空間構造と時間的進化を柔軟に結びつけ、より正確で包括的な分子系のシミュレーションを可能にする。
我々はMD17データセット上で,複数の分子間の最先端ベースラインに対する一貫した性能向上を実証し,特に不規則な時間ステップサンプリングや長期予測地平線のような困難な条件下で評価した。
アブレーション研究は、空間的および時間的マルチスケールなモデリングコンポーネントの重要な貢献を裏付けるものである。
本手法は, 複雑な分子系のシミュレーションを推し進め, 計算化学, 薬物発見, 材料科学の研究を加速させる可能性がある。
関連論文リスト
- Geometric Trajectory Diffusion Models [58.853975433383326]
生成モデルは3次元幾何学システムの生成において大きな可能性を示してきた。
既存のアプローチは静的構造のみで動作し、物理系は常に自然界において動的であるという事実を無視する。
本研究では3次元軌跡の時間分布をモデル化する最初の拡散モデルである幾何軌道拡散モデル(GeoTDM)を提案する。
論文 参考訳(メタデータ) (2024-10-16T20:36:41Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
シミュレーションプロセスのサロゲートを複数の時間分解能で学習するフレームワークであるImplict Transfer Operator (ITO) Learningを提案する。
また、全原子分子動力学を定量的にモデル化できる粗粒CG-SE3-ITOモデルを提案する。
論文 参考訳(メタデータ) (2023-05-29T12:19:41Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
学習に基づく力場はアブ・イニシアトMDシミュレーションの高速化に大きな進歩を遂げているが、現実の多くのアプリケーションでは不十分である。
非常に大きな時間ステップで、粗粒MDを直接シミュレートするマルチスケールグラフニューラルネットワークを学習することで、これらの課題に対処することを目指している。
論文 参考訳(メタデータ) (2022-04-21T18:07:08Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
機械学習(ML)の異なる手法を探索し、後処理のステップで分子動力学軌道の解像度をオンデマンドで向上する。
サーモスタット軌道の局所的時間対称性を利用して、長距離相関を学習し、分子の複雑さにまたがる雑音のダイナミックスに対して高いロバスト性を示すことができる。
論文 参考訳(メタデータ) (2022-01-02T23:00:30Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Molecular Latent Space Simulators [8.274472944075713]
本研究では、連続的な全原子シミュレーション軌道の運動モデルを学ぶための潜在空間シミュレータ(LSS)を提案する。
Trpタンパク質を応用して, 新規な超長尺合成折りたたみ路を創出する手法を実証する。
論文 参考訳(メタデータ) (2020-07-01T20:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。