論文の概要: ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
- arxiv url: http://arxiv.org/abs/2310.20208v3
- Date: Fri, 21 Jun 2024 06:55:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 20:17:56.968802
- Title: ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
- Title(参考訳): ZoomNeXt:カモフラージュ物体検出のための統一協調ピラミッドネットワーク
- Authors: Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang, Huchuan Lu,
- Abstract要約: 最近の物体検出(COD)は、周囲に視覚的に混入した物体を分割しようとする試みである。
本稿では,不明瞭な画像を観察する際の人間の行動を模倣する,効果的な統合型ピラミッドネットワークを提案する。
我々のフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法を一貫して上回っている。
- 参考スコア(独自算出の注目度): 70.11264880907652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and videos, \ie zooming in and out. Specifically, our approach employs the zooming strategy to learn discriminative mixed-scale semantics by the multi-head scale integration and rich granularity perception units, which are designed to fully explore imperceptible clues between candidate objects and background surroundings. The former's intrinsic multi-head aggregation provides more diverse visual patterns. The latter's routing mechanism can effectively propagate inter-frame differences in spatiotemporal scenarios and be adaptively deactivated and output all-zero results for static representations. They provide a solid foundation for realizing a unified architecture for static and dynamic COD. Moreover, considering the uncertainty and ambiguity derived from indistinguishable textures, we construct a simple yet effective regularization, uncertainty awareness loss, to encourage predictions with higher confidence in candidate regions. Our highly task-friendly framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
- Abstract(参考訳): 最近のcamouflaged object detection (COD)は、現実世界のシナリオでは極めて複雑で困難である、視覚的にブレンドされた物体を周囲に分割しようとする試みである。
カモフラージュされた物体とそれらの背景の間の本質的な類似性は別として、物体は通常、スケールが多様であり、外観がファジィで、さらに密閉されている。
そこで本研究では,不明瞭な画像やビデオのズームインやズームアウトを行う際の人間の行動を模倣する,効果的な統合型ピラミッドネットワークを提案する。
具体的には,マルチヘッドスケール統合とリッチな粒度認識ユニットによる識別的混合スケール意味論の学習に,ズーム方式を用いている。
前者の本質的なマルチヘッドアグリゲーションは、より多様な視覚パターンを提供する。
後者のルーティング機構は、時空間シナリオにおけるフレーム間差異を効果的に伝播し、静的表現のために適応的に非活性化し、全ゼロ結果を出力する。
静的および動的CODのための統一アーキテクチャを実現するための強固な基盤を提供する。
さらに,不明瞭なテクスチャから生じる不確実性とあいまいさを考慮し,候補領域に高い信頼を抱く予測を促進するため,単純で効果的な正規化,不確実性認識損失を構築した。
我々のタスクフレンドリーなフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法よりも一貫して優れています。
関連論文リスト
- SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy [55.570183323356964]
本稿では,隠蔽物体検出のための新しいSurrounding-Aware Network,すなわちSurANetを提案する。
周辺特徴の差分融合を用いて特徴写像のセマンティクスを強化し,隠蔽対象の強調を行う。
次に、周囲の特徴写像を対照的に学習することで隠蔽対象を識別するために、周囲のコントラストロスを適用した。
論文 参考訳(メタデータ) (2024-10-09T13:02:50Z) - Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-08-27T12:53:25Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - A bioinspired three-stage model for camouflaged object detection [8.11866601771984]
本稿では,1回の繰り返しで粗い部分分割を可能にする3段階モデルを提案する。
本モデルでは, 3つのデコーダを用いて, サブサンプル特徴, 収穫特徴, および高解像度のオリジナル特徴を逐次処理する。
我々のネットワークは、不要な複雑さを伴わずに最先端のCNNベースのネットワークを上回る。
論文 参考訳(メタデータ) (2023-05-22T02:01:48Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Zoom In and Out: A Mixed-scale Triplet Network for Camouflaged Object
Detection [0.0]
本稿では,不明瞭な画像を観察する際の人間の動作を模倣する混合スケール三重項ネットワークbf ZoomNetを提案する。
具体的には、ZoomNetは、ズーム戦略を用いて、設計されたスケール統合ユニットと階層的な混合スケールユニットによって、差別的な混合スケール意味学を学ぶ。
提案したタスクフレンドリなモデルは、4つの公開データセット上の既存の23の最先端手法を一貫して上回っている。
論文 参考訳(メタデータ) (2022-03-05T09:13:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。