Accelerating Non-Conjugate Gaussian Processes By Trading Off Computation For Uncertainty
- URL: http://arxiv.org/abs/2310.20285v3
- Date: Thu, 17 Apr 2025 07:47:26 GMT
- Title: Accelerating Non-Conjugate Gaussian Processes By Trading Off Computation For Uncertainty
- Authors: Lukas Tatzel, Jonathan Wenger, Frank Schneider, Philipp Hennig,
- Abstract summary: Non-conjugate Gaussian processes (NCGPs) define a flexible probabilistic framework to model categorical, ordinal and continuous data.<n>The approximation error adversely impacts the reliability of the model and is not accounted for in the uncertainty of the prediction.<n>We introduce a family of iterative methods that explicitly model this error.
- Score: 27.34933282665653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-conjugate Gaussian processes (NCGPs) define a flexible probabilistic framework to model categorical, ordinal and continuous data, and are widely used in practice. However, exact inference in NCGPs is prohibitively expensive for large datasets, thus requiring approximations in practice. The approximation error adversely impacts the reliability of the model and is not accounted for in the uncertainty of the prediction. We introduce a family of iterative methods that explicitly model this error. They are uniquely suited to parallel modern computing hardware, efficiently recycle computations, and compress information to reduce both the time and memory requirements for NCGPs. As we demonstrate on large-scale classification problems, our method significantly accelerates posterior inference compared to competitive baselines by trading off reduced computation for increased uncertainty.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
Conditional mixture networks (CMNs) are suitable for fast, gradient-free inference and can solve complex classification tasks.
We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository.
Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation.
arXiv Detail & Related papers (2024-08-29T10:43:55Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Scalable Higher-Order Tensor Product Spline Models [0.0]
We propose a new approach using a factorization method to derive a highly scalable higher-order tensor product spline model.
Our method allows for the incorporation of all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions.
arXiv Detail & Related papers (2024-02-02T01:18:48Z) - Sparse Variational Student-t Processes [8.46450148172407]
Student-t Processes are used to model heavy-tailed distributions and datasets with outliers.
We propose a sparse representation framework to allow Student-t Processes to be more flexible for real-world datasets.
We evaluate two proposed approaches on various synthetic and real-world datasets from UCI and Kaggle.
arXiv Detail & Related papers (2023-12-09T12:55:20Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Additive Higher-Order Factorization Machines [0.0]
We derive a scalable high-order tensor product spline model using a factorization approach.
Our method allows to include all (higher-order) interactions of non-linear feature effects.
We prove both theoretically and empirically that our methods scales notably better than existing approaches.
arXiv Detail & Related papers (2022-05-28T19:50:52Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Multi-output Gaussian Processes for Uncertainty-aware Recommender
Systems [3.908842679355254]
We introduce an efficient strategy for model training and inference, resulting in a model that scales to very large and sparse datasets.
Our model also provides meaningful uncertainty estimates about quantifying that prediction.
arXiv Detail & Related papers (2021-06-08T10:01:14Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
We propose a novel variational family that allows for retaining covariances between latent processes while achieving fast convergence.
We provide an efficient implementation of our new approach and apply it to several benchmark datasets.
It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
arXiv Detail & Related papers (2020-05-22T11:10:59Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
We propose an Amortized Variational Inference approach that leverages backpropagation, automatic differentiation and GPU-accelerated computation.
We show how normalizing flows can be used to increase the flexibility of the variational posterior approximations.
arXiv Detail & Related papers (2020-04-11T15:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.