A Low-cost Strategic Monitoring Approach for Scalable and Interpretable
Error Detection in Deep Neural Networks
- URL: http://arxiv.org/abs/2310.20349v1
- Date: Tue, 31 Oct 2023 10:45:55 GMT
- Title: A Low-cost Strategic Monitoring Approach for Scalable and Interpretable
Error Detection in Deep Neural Networks
- Authors: Florian Geissler, Syed Qutub, Michael Paulitsch, and Karthik
Pattabiraman
- Abstract summary: We present a highly compact run-time monitoring approach for deep computer vision networks.
It can efficiently detect silent data corruption originating from both hardware memory and input faults.
- Score: 6.537257913467249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a highly compact run-time monitoring approach for deep computer
vision networks that extracts selected knowledge from only a few (down to
merely two) hidden layers, yet can efficiently detect silent data corruption
originating from both hardware memory and input faults. Building on the insight
that critical faults typically manifest as peak or bulk shifts in the
activation distribution of the affected network layers, we use strategically
placed quantile markers to make accurate estimates about the anomaly of the
current inference as a whole. Importantly, the detector component itself is
kept algorithmically transparent to render the categorization of regular and
abnormal behavior interpretable to a human. Our technique achieves up to ~96%
precision and ~98% recall of detection. Compared to state-of-the-art anomaly
detection techniques, this approach requires minimal compute overhead (as
little as 0.3% with respect to non-supervised inference time) and contributes
to the explainability of the model.
Related papers
- CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Unsupervised Abnormal Traffic Detection through Topological Flow
Analysis [1.933681537640272]
topological connectivity component of a malicious flow is less exploited.
We present a simple method that facilitate the use of connectivity graph features in unsupervised anomaly detection algorithms.
arXiv Detail & Related papers (2022-05-14T18:52:49Z) - Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks [0.0]
This thesis proposes a framework to learn spatial-temporal aspects of raw network traffic in an unsupervised and protocol-agnostic manner.
The learned representations are used to measure the effect on the results of a subsequent anomaly detection.
arXiv Detail & Related papers (2022-04-20T09:22:41Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Little Help Makes a Big Difference: Leveraging Active Learning to
Improve Unsupervised Time Series Anomaly Detection [2.1684857243537334]
A large set of anomaly detection algorithms have been deployed for detecting unexpected network incidents.
Unsupervised anomaly detection algorithms often suffer from excessive false alarms.
We propose to use active learning to introduce and benefit from the feedback of operators.
arXiv Detail & Related papers (2022-01-25T13:54:19Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.