論文の概要: DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data
Capacity of SRAM-based Processing-In-Memory
- arxiv url: http://arxiv.org/abs/2310.20424v1
- Date: Tue, 31 Oct 2023 12:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 15:06:02.620081
- Title: DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data
Capacity of SRAM-based Processing-In-Memory
- Title(参考訳): ddc-pim:sram処理インメモリのデータ容量倍増のための効率的なアルゴリズム/アーキテクチャ共設計
- Authors: Cenlin Duan, Jianlei Yang, Xiaolin He, Yingjie Qi, Yikun Wang, Yiou
Wang, Ziyan He, Bonan Yan, Xueyan Wang, Xiaotao Jia, Weitao Pan, Weisheng
Zhao
- Abstract要約: 等価データ容量を効果的に2倍にする効率的なアルゴリズム/アーキテクチャ共設計手法であるDDC-PIMを提案する。
DDC-PIMはMobileNetV2で約2.84タイム、EfficientNet-B0で約2.69タイム、精度の損失は無視できる。
最先端のマクロと比較して、DDC-PIMは重量密度と面積効率をそれぞれ最大8.41タイムと2.75タイムに改善する。
- 参考スコア(独自算出の注目度): 6.367916611208411
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Processing-in-memory (PIM), as a novel computing paradigm, provides
significant performance benefits from the aspect of effective data movement
reduction. SRAM-based PIM has been demonstrated as one of the most promising
candidates due to its endurance and compatibility. However, the integration
density of SRAM-based PIM is much lower than other non-volatile memory-based
ones, due to its inherent 6T structure for storing a single bit. Within
comparable area constraints, SRAM-based PIM exhibits notably lower capacity.
Thus, aiming to unleash its capacity potential, we propose DDC-PIM, an
efficient algorithm/architecture co-design methodology that effectively doubles
the equivalent data capacity. At the algorithmic level, we propose a
filter-wise complementary correlation (FCC) algorithm to obtain a bitwise
complementary pair. At the architecture level, we exploit the intrinsic
cross-coupled structure of 6T SRAM to store the bitwise complementary pair in
their complementary states ($Q/\overline{Q}$), thereby maximizing the data
capacity of each SRAM cell. The dual-broadcast input structure and
reconfigurable unit support both depthwise and pointwise convolution, adhering
to the requirements of various neural networks. Evaluation results show that
DDC-PIM yields about $2.84\times$ speedup on MobileNetV2 and $2.69\times$ on
EfficientNet-B0 with negligible accuracy loss compared with PIM baseline
implementation. Compared with state-of-the-art SRAM-based PIM macros, DDC-PIM
achieves up to $8.41\times$ and $2.75\times$ improvement in weight density and
area efficiency, respectively.
- Abstract(参考訳): 新しいコンピューティングパラダイムである processing-in-memory (pim) は、効率的なデータ移動の削減という側面から大きなパフォーマンス上の利点を提供する。
SRAMベースのPIMは、耐久性と互換性のために最も有望な候補の1つとして実証されている。
しかし、SRAMベースのPIMの統合密度は他の揮発性メモリベースよりもはるかに低い。
同等の領域制約の中で、SRAMベースのPIMは明らかに容量が低い。
そこで,そのキャパシティポテンシャルを解き放つため,等価データ容量を効果的に倍にする効率的なアルゴリズム/アーキテクチャ共設計手法であるddc-pimを提案する。
アルゴリズムレベルでは、ビット単位の相補ペアを得るためのフィルタ単位の相補相関(fcc)アルゴリズムを提案する。
アーキテクチャレベルでは、6T SRAMの本質的なクロスカップリング構造を利用して、ビットワイズ補間ペアを相補状態(Q/\overline{Q}$)に保存し、各SRAMセルのデータ容量を最大化する。
デュアルブロードキャスト入力構造と再構成可能なユニットは、様々なニューラルネットワークの要件に準拠した、深度方向と点方向の畳み込みの両方をサポートする。
評価結果によると、DDC-PIMはMobileNetV2で約2.84\times$、EfficientNet-B0で約2.69\times$でPIMのベースライン実装と比較して精度が低下している。
最先端のSRAMベースのPIMマクロと比較して、DDC-PIMは最大8.41\times$と2.75\times$の重量密度と面積効率の向上を実現している。
関連論文リスト
- Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
本稿では, コントラスト損失計算を任意の小ブロックに分割するタイルベースの戦略を提案する。
分散システムの階層構造を活用するためのマルチレベルタイリング戦略も導入する。
SOTAメモリ効率のソリューションと比較すると、同等の速度を維持しながら、メモリの2桁の削減を実現している。
論文 参考訳(メタデータ) (2024-10-22T17:59:30Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Containing Analog Data Deluge at Edge through Frequency-Domain
Compression in Collaborative Compute-in-Memory Networks [0.0]
本稿では,ディープラーニング推論タスクにおける領域効率向上のための新しい手法を提案する。
アナログデータをより効率的に処理することにより、センサからの貴重なデータを選択的に保持し、アナログデータデルージュによる課題を軽減することができる。
論文 参考訳(メタデータ) (2023-09-20T03:52:04Z) - Accelerating Neural Network Inference with Processing-in-DRAM: From the
Edge to the Cloud [9.927754948343326]
ニューラルネットワークの性能(およびエネルギー効率)は、計算またはメモリリソースによって拘束できる。
PIM(Processing-in-Memory)パラダイムは、メモリバウンドNNを高速化する実行可能なソリューションである。
NN性能とエネルギー効率向上のための3つの最先端PIMアーキテクチャを解析する。
論文 参考訳(メタデータ) (2022-09-19T11:46:05Z) - Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of
Peripherals [11.31429464715989]
本稿では,ディープラーニングタスクを効率的に高速化する新しいPIMアーキテクチャを提案する。
アナログ集積回路とニューラル近似周辺回路で必要となるA/D変換を最小化する。
異なるベンチマークによる評価では、Neural-PIMはエネルギー効率を5.36x (1.73x)向上し、スループットを3.43x (1.59x)向上する。
論文 参考訳(メタデータ) (2022-01-30T16:14:49Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - MARS: Multi-macro Architecture SRAM CIM-Based Accelerator with
Co-designed Compressed Neural Networks [0.6817102408452476]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアプリケーションにおいて重要な役割を果たす。
CIMアーキテクチャは大規模行列ベクトル乗算を効果的に計算する大きな可能性を示している。
計算コストを削減するため、ネットワークプルーニングと量子化は、モデルサイズを縮小する2つの広く研究されている圧縮手法である。
論文 参考訳(メタデータ) (2020-10-24T10:31:49Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
モバイルデバイス上の畳み込みニューラルネットワーク(CNN)推論は、低精度(INT8)汎用行列乗算(GEMM)の効率的なハードウェアアクセラレーションを必要とする
CNN推論のGEMMをさらに加速する一般的な手法であり、特に、構造的スパーシリティは予測可能な負荷分散と非常に低いインデックスオーバーヘッドの利点がある。
ハードウェアの高利用を保ちながら、さまざまな分散レベルのサポートを提供する方法について、構造的疎結合で重要なアーキテクチャ上の課題に対処する。
論文 参考訳(メタデータ) (2020-09-04T20:17:42Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。