Ontologies for Models and Algorithms in Applied Mathematics and Related Disciplines
- URL: http://arxiv.org/abs/2310.20443v2
- Date: Wed, 31 Jul 2024 08:47:41 GMT
- Title: Ontologies for Models and Algorithms in Applied Mathematics and Related Disciplines
- Authors: Björn Schembera, Frank Wübbeling, Hendrik Kleikamp, Christine Biedinger, Jochen Fiedler, Marco Reidelbach, Aurela Shehu, Burkhard Schmidt, Thomas Koprucki, Dorothea Iglezakis, Dominik Göddeke,
- Abstract summary: The Mathematical Research Initiative has developed, merged and implemented crucial knowledge graphs.
This contributes to making mathematical research data by introducing semantic technology and documenting the mathematical foundations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In applied mathematics and related disciplines, the modeling-simulation-optimization workflow is a prominent scheme, with mathematical models and numerical algorithms playing a crucial role. For these types of mathematical research data, the Mathematical Research Data Initiative has developed, merged and implemented ontologies and knowledge graphs. This contributes to making mathematical research data FAIR by introducing semantic technology and documenting the mathematical foundations accordingly. Using the concrete example of microfracture analysis of porous media, it is shown how the knowledge of the underlying mathematical model and the corresponding numerical algorithms for its solution can be represented by the ontologies.
Related papers
- MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
We introduce MathFimer, a novel framework for mathematical reasoning step expansion.
We develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset.
We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains.
arXiv Detail & Related papers (2025-02-17T11:22:24Z) - Combining physics-based and data-driven models: advancing the frontiers of research with Scientific Machine Learning [3.912796219404492]
Machine learning combines physics-based and data-driven models.
With SciML, we can inject physics and mathematical knowledge into machine learning algorithms.
We discuss the great potential of a broad variety of SciML strategies in solving complex problems governed by partial differential equations.
arXiv Detail & Related papers (2025-01-30T19:09:38Z) - Large Language Models for Mathematical Analysis [3.7325315394927023]
This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI.
We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics.
We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems.
arXiv Detail & Related papers (2024-12-28T20:37:55Z) - Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning [85.635988711588]
We argue that enhancing the capabilities of large language models requires a paradigm shift in the design of mathematical datasets.
We advocate for mathematical dataset developers to consider the concept of "motivated proof", introduced by G. P'olya in 1949, which can serve as a blueprint for datasets that offer a better proof learning signal.
We provide a questionnaire designed specifically for math datasets that we urge creators to include with their datasets.
arXiv Detail & Related papers (2024-12-19T18:55:17Z) - Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics [0.0]
We aim to represent models and algorithms as well as their relationship semantically to make this research data FAIR.
The link between the two algorithmic tasks is established, as they occur in modeling corresponding to corresponding tasks.
Subject-specific metadata is relevant here, such as the symmetry of a matrix or the linearity of a mathematical model.
arXiv Detail & Related papers (2024-08-19T13:57:49Z) - Mathematical Language Models: A Survey [29.419915295762692]
This paper conducts a comprehensive survey of mathematical LMs, systematically categorizing pivotal research endeavors from two distinct perspectives: tasks and methodologies.
The survey entails the compilation of over 60 mathematical datasets, including training datasets, benchmark datasets, and augmented datasets.
arXiv Detail & Related papers (2023-12-12T01:39:16Z) - math-PVS: A Large Language Model Framework to Map Scientific
Publications to PVS Theories [10.416375584563728]
This work investigates the applicability of large language models (LLMs) in formalizing advanced mathematical concepts.
We envision an automated process, called emphmath-PVS, to extract and formalize mathematical theorems from research papers.
arXiv Detail & Related papers (2023-10-25T23:54:04Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.