Generative Learning of Continuous Data by Tensor Networks
- URL: http://arxiv.org/abs/2310.20498v2
- Date: Thu, 25 Jul 2024 15:25:27 GMT
- Title: Generative Learning of Continuous Data by Tensor Networks
- Authors: Alex Meiburg, Jing Chen, Jacob Miller, Raphaƫlle Tihon, Guillaume Rabusseau, Alejandro Perdomo-Ortiz,
- Abstract summary: We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
- Score: 45.49160369119449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Beyond their origin in modeling many-body quantum systems, tensor networks have emerged as a promising class of models for solving machine learning problems, notably in unsupervised generative learning. While possessing many desirable features arising from their quantum-inspired nature, tensor network generative models have previously been largely restricted to binary or categorical data, limiting their utility in real-world modeling problems. We overcome this by introducing a new family of tensor network generative models for continuous data, which are capable of learning from distributions containing continuous random variables. We develop our method in the setting of matrix product states, first deriving a universal expressivity theorem proving the ability of this model family to approximate any reasonably smooth probability density function with arbitrary precision. We then benchmark the performance of this model on several synthetic and real-world datasets, finding that the model learns and generalizes well on distributions of continuous and discrete variables. We develop methods for modeling different data domains, and introduce a trainable compression layer which is found to increase model performance given limited memory or computational resources. Overall, our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
Related papers
- Flow-based generative models as iterative algorithms in probability space [18.701755188870823]
Flow-based generative models offer exact likelihood estimation, efficient sampling, and deterministic transformations.
This tutorial presents an intuitive mathematical framework for flow-based generative models.
We aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
arXiv Detail & Related papers (2025-02-19T03:09:18Z) - Structure Learning in Gaussian Graphical Models from Glauber Dynamics [6.982878344925993]
We present the first algorithm for Gaussian model selection when data are sampled according to the Glauber dynamics.
We provide guarantees on the computational and statistical complexity of the proposed algorithm's structure learning performance.
arXiv Detail & Related papers (2024-12-24T18:49:13Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Quantum Generative Modeling of Sequential Data with Trainable Token
Embedding [0.0]
A quantum-inspired generative model known as the Born machines have shown great advancements in learning classical and quantum data.
We generalize the embedding method into trainable quantum measurement operators that can be simultaneously honed with MPS.
Our study indicated that combined with trainable embedding, Born machines can exhibit better performance and learn deeper correlations from the dataset.
arXiv Detail & Related papers (2023-11-08T22:56:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Tensor networks for unsupervised machine learning [9.897828174118974]
We present the Autoregressive Matrix Product States (AMPS), a tensor-network-based model combining the matrix product states from quantum many-body physics and the autoregressive models from machine learning.
We show that the proposed model significantly outperforms the existing tensor-network-based models and the restricted Boltzmann machines.
arXiv Detail & Related papers (2021-06-24T12:51:00Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.