Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants
- URL: http://arxiv.org/abs/2404.17763v1
- Date: Sat, 27 Apr 2024 02:58:22 GMT
- Title: Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants
- Authors: Yujie Chen, Anindya Bhadra, Antik Chakraborty,
- Abstract summary: Probabilistic graphical models that encode an underlying Markov random field are fundamental building blocks of generative modeling.
This paper is to demonstrate that full likelihood based analysis of these models is feasible in a computationally efficient manner.
- Score: 4.532043501030714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic graphical models that encode an underlying Markov random field are fundamental building blocks of generative modeling to learn latent representations in modern multivariate data sets with complex dependency structures. Among these, the exponential family graphical models are especially popular, given their fairly well-understood statistical properties and computational scalability to high-dimensional data based on pseudo-likelihood methods. These models have been successfully applied in many fields, such as the Ising model in statistical physics and count graphical models in genomics. Another strand of models allows some nodes to be latent, so as to allow the marginal distribution of the observable nodes to depart from exponential family to capture more complex dependence. These approaches form the basis of generative models in artificial intelligence, such as the Boltzmann machines and their restricted versions. A fundamental barrier to likelihood-based (i.e., both maximum likelihood and fully Bayesian) inference in both fully and partially observed cases is the intractability of the likelihood. The usual workaround is via adopting pseudo-likelihood based approaches, following the pioneering work of Besag (1974). The goal of this paper is to demonstrate that full likelihood based analysis of these models is feasible in a computationally efficient manner. The chief innovation lies in using a technique of Geyer (1991) to estimate the intractable normalizing constant, as well as its gradient, for intractable graphical models. Extensive numerical results, supporting theory and comparisons with pseudo-likelihood based approaches demonstrate the applicability of the proposed method.
Related papers
- Embedding-based statistical inference on generative models [10.948308354932639]
We extend results related to embedding-based representations of generative models to classical statistical inference settings.
We demonstrate that using the perspective space as the basis of a notion of "similar" is effective for multiple model-level inference tasks.
arXiv Detail & Related papers (2024-10-01T22:28:39Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
This dissertation focuses on using autoregressive models to answer complex probabilistic queries.
We develop a class of novel and efficient approximation techniques for marginalization in sequential models that are model-agnostic.
arXiv Detail & Related papers (2024-03-06T19:29:08Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Latent Gaussian Model Boosting [0.0]
Tree-boosting shows excellent predictive accuracy on many data sets.
We obtain increased predictive accuracy compared to existing approaches in both simulated and real-world data experiments.
arXiv Detail & Related papers (2021-05-19T07:36:30Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.