Flow-based generative models as iterative algorithms in probability space
- URL: http://arxiv.org/abs/2502.13394v1
- Date: Wed, 19 Feb 2025 03:09:18 GMT
- Title: Flow-based generative models as iterative algorithms in probability space
- Authors: Yao Xie, Xiuyuan Cheng,
- Abstract summary: Flow-based generative models offer exact likelihood estimation, efficient sampling, and deterministic transformations.
This tutorial presents an intuitive mathematical framework for flow-based generative models.
We aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
- Score: 18.701755188870823
- License:
- Abstract: Generative AI (GenAI) has revolutionized data-driven modeling by enabling the synthesis of high-dimensional data across various applications, including image generation, language modeling, biomedical signal processing, and anomaly detection. Flow-based generative models provide a powerful framework for capturing complex probability distributions, offering exact likelihood estimation, efficient sampling, and deterministic transformations between distributions. These models leverage invertible mappings governed by Ordinary Differential Equations (ODEs), enabling precise density estimation and likelihood evaluation. This tutorial presents an intuitive mathematical framework for flow-based generative models, formulating them as neural network-based representations of continuous probability densities. We explore key theoretical principles, including the Wasserstein metric, gradient flows, and density evolution governed by ODEs, to establish convergence guarantees and bridge empirical advancements with theoretical insights. By providing a rigorous yet accessible treatment, we aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Heuristically Adaptive Diffusion-Model Evolutionary Strategy [1.8299322342860518]
Diffusion Models represent a significant advancement in generative modeling.
Our research reveals a fundamental connection between diffusion models and evolutionary algorithms.
Our framework marks a major algorithmic transition, offering increased flexibility, precision, and control in evolutionary optimization processes.
arXiv Detail & Related papers (2024-11-20T16:06:28Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Generative Learning of Continuous Data by Tensor Networks [45.49160369119449]
We introduce a new family of tensor network generative models for continuous data.
We benchmark the performance of this model on several synthetic and real-world datasets.
Our methods give important theoretical and empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field of generative learning.
arXiv Detail & Related papers (2023-10-31T14:37:37Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Generative Flows with Invertible Attentions [135.23766216657745]
We introduce two types of invertible attention mechanisms for generative flow models.
We exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps.
Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models.
arXiv Detail & Related papers (2021-06-07T20:43:04Z) - Learning Generative Models using Denoising Density Estimators [29.068491722778827]
We introduce a new generative model based on denoising density estimators (DDEs)
Our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly.
Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.
arXiv Detail & Related papers (2020-01-08T20:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.