Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty
- URL: http://arxiv.org/abs/2310.20618v1
- Date: Tue, 31 Oct 2023 16:51:40 GMT
- Title: Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty
- Authors: Yuxin Zhang, Cl\'ement Huneau, J\'er\^ome Idier, and Diana Mateus
- Abstract summary: Enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation.
We propose a hybrid approach leveraging advances in diffusion models.
We conduct comprehensive experiments on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our approach.
- Score: 5.375425938215277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite its wide use in medicine, ultrasound imaging faces several challenges
related to its poor signal-to-noise ratio and several sources of noise and
artefacts. Enhancing ultrasound image quality involves balancing concurrent
factors like contrast, resolution, and speckle preservation. In recent years,
there has been progress both in model-based and learning-based approaches to
improve ultrasound image reconstruction. Bringing the best from both worlds, we
propose a hybrid approach leveraging advances in diffusion models. To this end,
we adapt Denoising Diffusion Restoration Models (DDRM) to incorporate
ultrasound physics through a linear direct model and an unsupervised
fine-tuning of the prior diffusion model. We conduct comprehensive experiments
on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our
approach in achieving high-quality image reconstructions from a single plane
wave input and in comparison to state-of-the-art methods. Finally, given the
stochastic nature of the method, we analyse in depth the statistical properties
of single and multiple-sample reconstructions, experimentally show the
informativeness of their variance, and provide an empirical model relating this
behaviour to speckle noise. The code and data are available at: (upon
acceptance).
Related papers
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Ultrasound Image Enhancement with the Variance of Diffusion Models [7.360352432782388]
Enhancing ultrasound images requires a delicate balance between contrast, resolution, and speckle preservation.
This paper introduces a novel approach that integrates adaptive beamforming with denoising diffusion-based variance imaging.
arXiv Detail & Related papers (2024-09-17T17:29:33Z) - Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
High frame-rate ultrasound imaging is a cutting-edge technique that enables high frame-rate imaging.
One challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption.
Our proposed solution aims to enhance plane wave image quality.
Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise.
In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes.
arXiv Detail & Related papers (2024-08-20T16:31:31Z) - Ultrasound Imaging based on the Variance of a Diffusion Restoration Model [7.360352432782388]
We propose a hybrid reconstruction method combining an ultrasound linear direct model with a learning-based prior coming from a generative Denoising Diffusion model.
We conduct experiments on synthetic, in-vitro, and in-vivo data, demonstrating the efficacy of our variance imaging approach in achieving high-quality image reconstructions.
arXiv Detail & Related papers (2024-03-22T16:10:38Z) - Fast Sampling generative model for Ultrasound image reconstruction [3.3545464959630578]
We propose a novel sampling framework that concurrently enforces data consistency of ultrasound signals and data-driven priors.
By leveraging the advanced diffusion model, the generation of high-quality images is substantially expedited.
arXiv Detail & Related papers (2023-12-15T03:28:17Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.