Ultrasound Image Enhancement with the Variance of Diffusion Models
- URL: http://arxiv.org/abs/2409.11380v1
- Date: Tue, 17 Sep 2024 17:29:33 GMT
- Title: Ultrasound Image Enhancement with the Variance of Diffusion Models
- Authors: Yuxin Zhang, Clément Huneau, Jérôme Idier, Diana Mateus,
- Abstract summary: Enhancing ultrasound images requires a delicate balance between contrast, resolution, and speckle preservation.
This paper introduces a novel approach that integrates adaptive beamforming with denoising diffusion-based variance imaging.
- Score: 7.360352432782388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound imaging, despite its widespread use in medicine, often suffers from various sources of noise and artifacts that impact the signal-to-noise ratio and overall image quality. Enhancing ultrasound images requires a delicate balance between contrast, resolution, and speckle preservation. This paper introduces a novel approach that integrates adaptive beamforming with denoising diffusion-based variance imaging to address this challenge. By applying Eigenspace-Based Minimum Variance (EBMV) beamforming and employing a denoising diffusion model fine-tuned on ultrasound data, our method computes the variance across multiple diffusion-denoised samples to produce high-quality despeckled images. This approach leverages both the inherent multiplicative noise of ultrasound and the stochastic nature of diffusion models. Experimental results on a publicly available dataset demonstrate the effectiveness of our method in achieving superior image reconstructions from single plane-wave acquisitions. The code is available at: https://github.com/Yuxin-Zhang-Jasmine/IUS2024_Diffusion.
Related papers
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
High frame-rate ultrasound imaging is a cutting-edge technique that enables high frame-rate imaging.
One challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption.
Our proposed solution aims to enhance plane wave image quality.
Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise.
In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes.
arXiv Detail & Related papers (2024-08-20T16:31:31Z) - Ultrasound Imaging based on the Variance of a Diffusion Restoration Model [7.360352432782388]
We propose a hybrid reconstruction method combining an ultrasound linear direct model with a learning-based prior coming from a generative Denoising Diffusion model.
We conduct experiments on synthetic, in-vitro, and in-vivo data, demonstrating the efficacy of our variance imaging approach in achieving high-quality image reconstructions.
arXiv Detail & Related papers (2024-03-22T16:10:38Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
Enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation.
We propose a hybrid approach leveraging advances in diffusion models.
We conduct comprehensive experiments on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our approach.
arXiv Detail & Related papers (2023-10-31T16:51:40Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Markup-to-Image Diffusion Models with Scheduled Sampling [111.30188533324954]
Building on recent advances in image generation, we present a data-driven approach to rendering markup into images.
The approach is based on diffusion models, which parameterize the distribution of data using a sequence of denoising operations.
We conduct experiments on four markup datasets: mathematical formulas (La), table layouts (HTML), sheet music (LilyPond), and molecular images (SMILES)
arXiv Detail & Related papers (2022-10-11T04:56:12Z) - Denoising Diffusion Gamma Models [91.22679787578438]
We introduce the Denoising Diffusion Gamma Model (DDGM) and show that noise from Gamma distribution provides improved results for image and speech generation.
Our approach preserves the ability to efficiently sample state in the training diffusion process while using Gamma noise.
arXiv Detail & Related papers (2021-10-10T10:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.