Experimental high-dimensional entanglement certification and quantum
steering with time-energy measurements
- URL: http://arxiv.org/abs/2310.20694v1
- Date: Tue, 31 Oct 2023 17:55:36 GMT
- Title: Experimental high-dimensional entanglement certification and quantum
steering with time-energy measurements
- Authors: Kai-Chi Chang, Murat Can Sarihan, Xiang Cheng, Paul Erker, Andrew
Mueller, Maria Spiropulu, Matthew D. Shaw, Boris Korzh, Marcus Huber, and
Chee Wei Wong
- Abstract summary: Time-frequency qudit states offer significantly increased quantum capacities while keeping the number of photons constant.
We develop a new scheme and experimentally demonstrate the certification of 24-dimensional entanglement and a 9-dimensional quantum steering.
Our highly scalable scheme is based on commercial telecommunication optical fiber components and recently developed low-jitter high-efficiency single-photon detectors.
- Score: 4.573407244528267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional entanglement provides unique ways of transcending the
limitations of current approaches in quantum information processing, quantum
communications based on qubits. The generation of time-frequency qudit states
offer significantly increased quantum capacities while keeping the number of
photons constant, but pose significant challenges regarding the possible
measurements for certification of entanglement. Here, we develop a new scheme
and experimentally demonstrate the certification of 24-dimensional entanglement
and a 9-dimensional quantum steering. We then subject our photon-pairs to
dispersion conditions equivalent to the transmission through 600-km of fiber
and still certify 21-dimensional entanglement. Furthermore, we use a steering
inequality to prove 7-dimensional entanglement in a semi-device independent
manner, proving that large chromatic dispersion is not an obstacle in
distributing and certifying high-dimensional entanglement and quantum steering.
Our highly scalable scheme is based on commercial telecommunication optical
fiber components and recently developed low-jitter high-efficiency
single-photon detectors, thus opening new pathways towards advanced large-scale
quantum information processing and high-performance, noise-tolerant quantum
communications with time-energy measurements
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Certifying high-dimensional quantum channels [0.07244278438745265]
It is crucial to certify that a given quantum channel can reliably transmit high-dimensional quantum information.
We first present a notion of dimensionality of quantum channels, and develop efficient certification methods for this quantity.
In turn we apply these methods to a photonic experiment and certify dimensionalities up to 59 for a commercial graded-index multi-mode optical fiber.
arXiv Detail & Related papers (2024-08-28T15:51:06Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - High-Dimensional Entanglement for Quantum Communication in the Frequency
Domain [0.0]
High-dimensional photonic entanglement is a promising candidate for error-protected quantum information processing.
This study shows how to harness the large frequency-entanglement inherent in standard continuous-wave spontaneous down-conversion processes.
arXiv Detail & Related papers (2022-06-02T10:08:28Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - A proposal for practical multidimensional quantum networks [0.0]
High-dimensional quantum systems (qudits) present higher photon information efficiency and robustness to noise.
Their use in quantum networks present experimental challenges due to the impractical resources required in high-dimensional quantum repeaters.
Our work significantly simplifies the implementation of high-dimensional quantum networks, fostering their development with current technology.
arXiv Detail & Related papers (2021-03-16T17:15:58Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - High-Dimensional Pixel Entanglement: Efficient Generation and
Certification [0.0]
We show the certification of photonic high-dimensional entanglement in the transverse position-momentum degree-of-freedom.
We demonstrate state fidelities of up to 94.4% in a 19-dimensional state-space, entanglement in up to 55 local dimensions, and an entanglement-of-formation of up to 4 ebits.
Our results pave the way for noise-robust quantum networks that saturate the information-carrying capacity of single photons.
arXiv Detail & Related papers (2020-04-10T11:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.