論文の概要: SC-MIL: Sparsely Coded Multiple Instance Learning for Whole Slide Image
Classification
- arxiv url: http://arxiv.org/abs/2311.00048v1
- Date: Tue, 31 Oct 2023 18:01:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 16:27:41.812078
- Title: SC-MIL: Sparsely Coded Multiple Instance Learning for Whole Slide Image
Classification
- Title(参考訳): sc-mil: スライド画像全体の分類のための疎結合な複数インスタンス学習
- Authors: Peijie Qiu, Pan Xiao, Wenhui Zhu, Yalin Wang, Aristeidis Sotiras
- Abstract要約: 多重インスタンス学習(MIL)は、弱い教師付き全スライド画像(WSI)分類に広く用いられている。
本稿では,この2つの側面を同時に扱うために,スパース辞書学習を活用して,スパース符号化MIL(SC-MIL)を提案する。
提案したSCモジュールは,プラグイン・アンド・プレイ方式で既存のMILフレームワークに組み込むことができる。
- 参考スコア(独自算出の注目度): 2.506648245691747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple Instance Learning (MIL) has been widely used in weakly supervised
whole slide image (WSI) classification. Typical MIL methods include a feature
embedding part that embeds the instances into features via a pre-trained
feature extractor and the MIL aggregator that combines instance embeddings into
predictions. The current focus has been directed toward improving these parts
by refining the feature embeddings through self-supervised pre-training and
modeling the correlations between instances separately. In this paper, we
proposed a sparsely coded MIL (SC-MIL) that addresses those two aspects at the
same time by leveraging sparse dictionary learning. The sparse dictionary
learning captures the similarities of instances by expressing them as a sparse
linear combination of atoms in an over-complete dictionary. In addition,
imposing sparsity help enhance the instance feature embeddings by suppressing
irrelevant instances while retaining the most relevant ones. To make the
conventional sparse coding algorithm compatible with deep learning, we unrolled
it into an SC module by leveraging deep unrolling. The proposed SC module can
be incorporated into any existing MIL framework in a plug-and-play manner with
an acceptable computation cost. The experimental results on multiple datasets
demonstrated that the proposed SC module could substantially boost the
performance of state-of-the-art MIL methods. The codes are available at
\href{https://github.com/sotiraslab/SCMIL.git}{https://github.com/sotiraslab/SCMIL.git}.
- Abstract(参考訳): 多重インスタンス学習(MIL)は、弱い教師付き全スライド画像(WSI)分類に広く用いられている。
典型的なMILメソッドには、事前訓練された機能抽出器を介してインスタンスを機能に埋め込む機能埋め込み部と、インスタンス埋め込みを予測に組み合わせるMILアグリゲータが含まれる。
現在の焦点は、自己教師付き事前トレーニングを通じて機能の埋め込みを洗練し、インスタンス間の相関関係を個別にモデル化することで、これらの部分を改善することである。
本稿では,この2つの側面を同時に扱うために,スパース辞書学習を活用して,スパース符号化MIL(SC-MIL)を提案する。
スパース辞書学習は、オーバーコンプリート辞書における原子のスパース線形結合として表現することで、インスタンスの類似性を捉える。
さらに、不適切なインスタンスを抑圧し、最も関係のあるインスタンスを保持しながら、インスタンス機能の埋め込みを強化するのに役立つ。
従来のスパース符号化アルゴリズムをディープラーニングと互換性を持たせるために,deep unrollingを利用してscモジュールに展開した。
提案したSCモジュールは、既存のMILフレームワークにプラグイン・アンド・プレイ方式で組み込むことができ、計算コストは許容できる。
複数のデータセットに対する実験結果から,提案したSCモジュールは最先端MIL法の性能を大幅に向上させることができることが示された。
コードは \href{https://github.com/sotiraslab/SCMIL.git}{https://github.com/sotiraslab/SCMIL.git} で公開されている。
関連論文リスト
- MamMIL: Multiple Instance Learning for Whole Slide Images with State
Space Models [58.39336492765728]
がん診断のゴールドスタンダードである病理診断は、TransformerとMIL(Multiple Case Learning)フレームワークを併用して、全スライド画像(WSI)を用いて、優れたパフォーマンスを実現している。
選択的構造化状態空間モデル(Mamba)とMILとの協調によるWSI分類のためのMamMILフレームワークを提案する。
具体的には、マンバが一方向一次元(一次元)シーケンスモデリングしか行えないという問題を解決するため、双方向状態空間モデルと2次元コンテキスト認識ブロックを革新的に導入する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - Reproducibility in Multiple Instance Learning: A Case For Algorithmic
Unit Tests [59.623267208433255]
多重インスタンス学習(MIL)は、正と負のラベルと入力の「バグ」を持つ分類問題のサブドメインである。
本研究では,最も顕著な深層MILモデルの5つについて検討し,いずれも標準MILの仮定を尊重していないことを明らかにする。
提案した"アルゴリズムユニットテスト"によってこの問題を特定し,実証する。そこでは,MILを尊重するモデルによって解決可能な,合成データセットを作成する。
論文 参考訳(メタデータ) (2023-10-27T03:05:11Z) - RoFormer for Position Aware Multiple Instance Learning in Whole Slide
Image Classification [0.0]
全スライド画像(WSI)分類は、計算病理学において重要な課題である。
現在の手法は、凍結した特徴抽出器を備えたMIL(Multiple-instance Learning)モデルに依存している。
本手法は,弱い教師付き分類タスクにおいて,最先端のMILモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-03T09:59:59Z) - Multiple Instance Learning Framework with Masked Hard Instance Mining
for Whole Slide Image Classification [11.996318969699296]
マスケードハードインスタンスマイニング(MHIM-MIL)について紹介する。
MHIM-MILは、潜在的なハードインスタンスを探索するために一貫性のある制約を持つシームズ構造(Teacher-Student)を使用する。
CAMELYON-16およびTCGA肺がんデータセットの実験結果は、MHIM-MILがパフォーマンスとトレーニングコストの点で他の最新の方法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-07-28T01:40:04Z) - Iteratively Coupled Multiple Instance Learning from Instance to Bag
Classifier for Whole Slide Image Classification [21.16848269555692]
Whole Slide Image (WSI)分類は、非常に高解像度であり、きめ細かいラベルがないため、依然として課題である。
我々は,バッグレベルの分類器からパッチ埋め込み装置への損失バックプロパゲーションプロセスをブリッジする,ICMIL (Iteratively Coupled MIL) と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T06:12:53Z) - Unbiased Multiple Instance Learning for Weakly Supervised Video Anomaly
Detection [74.80595632328094]
弱監視ビデオ異常検出(WSVAD)における多重インスタンス学習(MIL)の優位性
We propose a new MIL framework: Unbiased MIL (UMIL) to learn unbiased anomaly features that improve WSVAD。
論文 参考訳(メタデータ) (2023-03-22T08:11:22Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning
for Histopathology Whole Slide Image Classification [18.11776334311096]
マルチプル・インスタンス・ラーニング(MIL)は、スライド画像(WSI)の病理組織学的分類において、ますます使われている。
擬似バッグの概念を導入することにより,バッグの数を事実上拡大することを提案する。
我々はまた、注目に基づくMILの枠組みに基づくインスタンス確率の導出にも貢献し、この導出を利用して提案したフレームワークの構築と分析に役立てる。
論文 参考訳(メタデータ) (2022-03-22T22:33:42Z) - CIL: Contrastive Instance Learning Framework for Distantly Supervised
Relation Extraction [52.94486705393062]
我々は、典型的なマルチインスタンス学習(MIL)フレームワークを超えて、新しいコントラッシブ・インスタンス学習(CIL)フレームワークを提案する。
具体的には、初期MILをリレーショナルトリプルエンコーダと各インスタンスに対する負のペアに対する制約正のペアとみなす。
提案手法の有効性を実験的に検証し, 提案手法をNYT10, GDS, KBPで比較検討した。
論文 参考訳(メタデータ) (2021-06-21T04:51:59Z) - Dual-stream Multiple Instance Learning Network for Whole Slide Image
Classification with Self-supervised Contrastive Learning [16.84711797934138]
スライド画像全体分類(WSI)の課題に対処する。
WSI分類は、スライドレベルラベルのみが利用可能である場合、多重インスタンス学習(MIL)問題としてキャストすることができる。
局所アノテーションを必要としないWSI分類と腫瘍検出のためのMILベースの手法を提案する。
論文 参考訳(メタデータ) (2020-11-17T20:51:15Z) - Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies [60.285091454321055]
我々は,アンカー埋め込みとスパース変換行列の小さな組を学習する,単純で効率的な埋め込みアルゴリズムを設計する。
テキスト分類、言語モデリング、映画レコメンデーションのベンチマークでは、ANTは大きな語彙サイズに特に適していることが示されている。
論文 参考訳(メタデータ) (2020-03-18T13:07:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。