Observing quantum measurement collapse as a learnability phase
transition
- URL: http://arxiv.org/abs/2311.00058v1
- Date: Tue, 31 Oct 2023 18:06:05 GMT
- Title: Observing quantum measurement collapse as a learnability phase
transition
- Authors: Utkarsh Agrawal, Javier Lopez-Piqueres, Romain Vasseur, Sarang
Gopalakrishnan, and Andrew C. Potter
- Abstract summary: We report an observable-sharpening measurement-induced phase transition in a chain of trapped ions in Quantinuum H1-1 system model quantum processor.
This transition manifests as a sharp, concomitant change in both the quantum uncertainty of an observable and the amount of information an observer can learn from the measurement record.
We leverage insights from statistical mechanical models and machine learning to design efficiently-computable algorithms to observe this transition.
- Score: 1.188383832081829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mechanism by which an effective macroscopic description of quantum
measurement in terms of discrete, probabilistic collapse events emerges from
the reversible microscopic dynamics remains an enduring open question. Emerging
quantum computers offer a promising platform to explore how measurement
processes evolve across a range of system sizes while retaining coherence.
Here, we report the experimental observation of evidence for an
observable-sharpening measurement-induced phase transition in a chain of
trapped ions in Quantinuum H1-1 system model quantum processor. This transition
manifests as a sharp, concomitant change in both the quantum uncertainty of an
observable and the amount of information an observer can (in principle) learn
from the measurement record, upon increasing the strength of measurements. We
leverage insights from statistical mechanical models and machine learning to
design efficiently-computable algorithms to observe this transition (without
non-scalable post-selection on measurement outcomes) and to mitigate the
effects on errors in noisy hardware.
Related papers
- Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Entanglement transitions in quantum-enhanced experiments [0.0]
A quantum-enhanced experiment, in which information is transduced from a system of interest and processed on a quantum computer, has the possibility of exponential advantage in sampling tasks.
We demonstrate that, similar to the measurement induced phase transition(MIPT) occurring in traditional experiments, quantum-enhanced experiments can also show entanglement phase transitions.
arXiv Detail & Related papers (2023-10-04T18:00:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.