論文の概要: Intell-dragonfly: A Cybersecurity Attack Surface Generation Engine Based On Artificial Intelligence-generated Content Technology
- arxiv url: http://arxiv.org/abs/2311.00240v1
- Date: Wed, 1 Nov 2023 02:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 13:55:39.149963
- Title: Intell-dragonfly: A Cybersecurity Attack Surface Generation Engine Based On Artificial Intelligence-generated Content Technology
- Title(参考訳): Intell-dragonfly:人工知能によるコンテンツ生成技術に基づくサイバーセキュリティ攻撃サーフェス生成エンジン
- Authors: Xingchen Wu, Qin Qiu, Jiaqi Li, Yang Zhao,
- Abstract要約: 本研究では,人工知能を用いたサイバーセキュリティ攻撃サーフェス生成エンジンであるIntell-dragonflyを提案する。
本稿では,ChatGPT技術に基づいて,多種多様かつパーソナライズされた攻撃シナリオを生成する自動攻撃面生成プロセスを設計する。
実験の結果,ChatGPT法は攻撃面生成の精度,多様性,操作性において大きな利点があることがわかった。
- 参考スコア(独自算出の注目度): 8.246783059859887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of the Internet, cyber security issues have become increasingly prominent. Traditional cyber security defense methods are limited in the face of ever-changing threats, so it is critical to seek innovative attack surface generation methods. This study proposes Intell-dragonfly, a cyber security attack surface generation engine based on artificial intelligence generation technology, to meet the challenges of cyber security. Based on ChatGPT technology, this paper designs an automated attack surface generation process, which can generate diversified and personalized attack scenarios, targets, elements and schemes. Through experiments in a real network environment, the effect of the engine is verified and compared with traditional methods, which improves the authenticity and applicability of the attack surface. The experimental results show that the ChatGPT-based method has significant advantages in the accuracy, diversity and operability of attack surface generation. Furthermore, we explore the strengths and limitations of the engine and discuss its potential applications in the field of cyber security. This research provides a novel approach to the field of cyber security that is expected to have a positive impact on defense and prevention of cyberthreats.
- Abstract(参考訳): インターネットの急速な発展に伴い、サイバーセキュリティの問題はますます顕著になっている。
従来のサイバーセキュリティ防衛手法は、常に変化する脅威に直面しているため、革新的な攻撃面生成方法を求めることが重要である。
本研究では,人工知能を用いたサイバーセキュリティ攻撃サーフェス生成エンジンであるIntell-dragonflyを提案する。
本稿では、ChatGPT技術に基づいて、多種多様でパーソナライズされた攻撃シナリオ、ターゲット、要素、スキームを生成する自動攻撃面生成プロセスを設計する。
実ネットワーク環境での実験を通じて、エンジンの効果を従来の手法と比較し、攻撃面の信頼性と適用性を向上させる。
実験の結果,ChatGPT法は攻撃面生成の精度,多様性,操作性において大きな利点があることがわかった。
さらに,エンジンの強度と限界について検討し,サイバーセキュリティ分野への応用の可能性について論じる。
本研究は,サイバーセキュリティ分野への新たなアプローチを提供し,サイバー脅威の防衛と防止に肯定的な影響を与えるものと期待されている。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
本稿では,デジタル攻撃に対する最先端の対面防止手法の脆弱性に光を当てる。
反偽造システムに遭遇する一般的な脅威を包括的に分類する。
論文 参考訳(メタデータ) (2024-06-06T02:05:35Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Towards in-situ Psychological Profiling of Cybercriminals Using Dynamically Generated Deception Environments [0.0]
サイバー犯罪は年間10兆ドル近くを世界経済に費やしていると見積もられている。
サイバー犯罪の脅威と戦うには、サイバー防衛に対する従来の周辺セキュリティアプローチが不十分であることが証明されている。
詐欺的手法は、攻撃者を誤解させ、重要な資産から切り離し、同時に脅威俳優にサイバー脅威情報を収集することを目的としている。
本稿では,サイバー攻撃のシミュレーション中に,攻撃者の身元をリアルタイムで把握するために開発された概念実証システムについて述べる。
論文 参考訳(メタデータ) (2024-05-19T09:48:59Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
スマートグリッド(スマートグリッド、英: Smart grid、SG)は、現代のサイバー・物理機器を利用した複雑なサイバー物理システムである。
サイバー攻撃は、最先端のシステムの使用と進歩に直面する主要な脅威である。
機械学習(ML)は、攻撃者やシステムオペレーターによるSGのサイバー攻撃を悪用し、防御するために使用されている。
論文 参考訳(メタデータ) (2020-09-01T05:16:51Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。