論文の概要: Countering Autonomous Cyber Threats
- arxiv url: http://arxiv.org/abs/2410.18312v1
- Date: Wed, 23 Oct 2024 22:46:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:52:05.951246
- Title: Countering Autonomous Cyber Threats
- Title(参考訳): 自律的なサイバー脅威に対処する
- Authors: Kade M. Heckel, Adrian Weller,
- Abstract要約: ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
- 参考スコア(独自算出の注目度): 40.00865970939829
- License:
- Abstract: With the capability to write convincing and fluent natural language and generate code, Foundation Models present dual-use concerns broadly and within the cyber domain specifically. Generative AI has already begun to impact cyberspace through a broad illicit marketplace for assisting malware development and social engineering attacks through hundreds of malicious-AI-as-a-services tools. More alarming is that recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations. However, these previous investigations primarily focused on the threats posed by proprietary models due to the until recent lack of strong open-weight model and additionally leave the impacts of network defenses or potential countermeasures unexplored. Critically, understanding the aptitude of downloadable models to function as offensive cyber agents is vital given that they are far more difficult to govern and prevent their misuse. As such, this work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks. Using target machines from a commercial provider, the most recently released downloadable models are found to be on par with a leading proprietary model at conducting simple cyber attacks with common hacking tools against known vulnerabilities. To mitigate such LLM-powered threats, defensive prompt injection (DPI) payloads for disrupting the malicious cyber agent's workflow are demonstrated to be effective. From these results, the implications for AI safety and governance with respect to cybersecurity is analyzed.
- Abstract(参考訳): 説得力があり流動的な自然言語を書き、コードを生成する能力によって、Foundation Modelsは、サイバードメイン内で広く、特に二元的関心事を提示する。
ジェネレーティブAIは、何百もの悪意あるAI・アズ・ア・サービスツールを通じて、マルウェア開発やソーシャルエンジニアリング攻撃を支援するために、広範囲にわたる不正なマーケットプレースを通じて、すでにサイバースペースに影響を与え始めている。
さらに注意すべきは、最近の研究は、これらの高度なモデルが攻撃的なサイバースペース操作を通知または独立して実行する可能性を示していることだ。
しかし、これらの以前の調査は、主にプロプライエタリなモデルによる脅威に焦点を当てており、これは、最近まで強力なオープンウェイトモデルがなかったことによるものであり、ネットワーク防衛や潜在的対策の影響を未然に残している。
批判的に言えば、攻撃的なサイバーエージェントとして機能するダウンロード可能なモデルの適性を理解することが不可欠である。
このように、この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を打倒するための防御メカニズムを調査する。
商用プロバイダのターゲットマシンを使用することで、最も最近リリースされたダウンロード可能なモデルは、既知の脆弱性に対する一般的なハッキングツールを使用した単純なサイバー攻撃を実行するための主要なプロプライエタリモデルと同等であることが判明した。
このようなLSMによる脅威を軽減するため、悪意のあるサイバーエージェントのワークフローを妨害する防御的プロンプトインジェクション(DPI)ペイロードが有効であることが示されている。
これらの結果から,サイバーセキュリティに対するAIの安全性とガバナンスの意義を分析した。
関連論文リスト
- Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
マルチエージェントディープ強化学習(MADRL)は、自律型サイバーオペレーションの有効性とレジリエンスを高めるための有望なアプローチである。
シミュレーションサイバー攻撃シナリオにおいて,各エージェントが迅速に学習し,MADRLを用いて自律的に脅威に対処できることを実証する。
論文 参考訳(メタデータ) (2024-10-11T15:15:09Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeekはAI駆動のマルチエージェントソフトウェアプラットフォームで、人間の介入なしに脆弱性を特定し、悪用する。
予備評価では、BreachSeekはローカルネットワーク内の悪用可能なマシンの脆弱性をうまく利用した。
今後の開発は、その能力を拡大し、サイバーセキュリティの専門家にとって欠かせないツールとして位置づけることを目指している。
論文 参考訳(メタデータ) (2024-08-31T19:15:38Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Threat analysis and adversarial model for Smart Grids [1.7482569079741024]
このスマートパワーグリッドのサイバードメインは、新たな脅威を開拓する。
規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に取り組んでいる。
近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
論文 参考訳(メタデータ) (2024-06-17T16:33:46Z) - Generative AI in Cybersecurity [0.0]
生成人工知能(GAI)は、データ分析、パターン認識、意思決定プロセスの分野を変える上で重要な役割を担っている。
GAIは急速に進歩し、サイバーセキュリティプロトコルや規制フレームワークの現在のペースを超越している。
この研究は、マルウェア生成におけるGAIの高度な利用に対抗するために、より複雑な防衛戦略を積極的に特定し、開発する組織にとって重要な必要性を強調している。
論文 参考訳(メタデータ) (2024-05-02T19:03:11Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。