RAUNE-Net: A Residual and Attention-Driven Underwater Image Enhancement
Method
- URL: http://arxiv.org/abs/2311.00246v1
- Date: Wed, 1 Nov 2023 03:00:07 GMT
- Title: RAUNE-Net: A Residual and Attention-Driven Underwater Image Enhancement
Method
- Authors: Wangzhen Peng, Chenghao Zhou, Runze Hu, Jingchao Cao, Yutao Liu
- Abstract summary: Underwater image enhancement (UIE) poses challenges due to distinctive properties of the underwater environment.
In this paper, we propose a more reliable and reasonable UIE network called RAUNE-Net.
Our method obtains promising objective performance and consistent visual results across various real-world underwater images.
- Score: 2.6645441842326756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater image enhancement (UIE) poses challenges due to distinctive
properties of the underwater environment, including low contrast, high
turbidity, visual blurriness, and color distortion. In recent years, the
application of deep learning has quietly revolutionized various areas of
scientific research, including UIE. However, existing deep learning-based UIE
methods generally suffer from issues of weak robustness and limited
adaptability. In this paper, inspired by residual and attention mechanisms, we
propose a more reliable and reasonable UIE network called RAUNE-Net by
employing residual learning of high-level features at the network's bottle-neck
and two aspects of attention manipulations in the down-sampling procedure.
Furthermore, we collect and create two datasets specifically designed for
evaluating UIE methods, which contains different types of underwater
distortions and degradations. The experimental validation demonstrates that our
method obtains promising objective performance and consistent visual results
across various real-world underwater images compared to other eight UIE
methods. Our example code and datasets are publicly available at
https://github.com/fansuregrin/RAUNE-Net.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
Underwater image enhancement (UIE) plays a crucial role in various marine applications.
Current learning-based approaches frequently lack explicit prior knowledge about the physical processes involved in underwater image formation.
This paper proposes a novel deep unfolding network (DUN) for UIE that integrates color priors and inter-stage feature incorporation.
arXiv Detail & Related papers (2024-08-20T08:48:33Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer [26.15238399758745]
Underwater images often exhibit poor quality, distorted color balance and low contrast.
Current deep learning methods rely on Neural Convolutional Networks (CNNs) that lack the multi-scale enhancement.
We propose a Multi-scale Transformer-based Network for enhancing images at multiple frequencies via semi-supervised learning.
arXiv Detail & Related papers (2023-10-31T06:19:09Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Adaptive Uncertainty Distribution in Deep Learning for Unsupervised
Underwater Image Enhancement [1.9249287163937976]
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data.
We propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model.
We show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics.
arXiv Detail & Related papers (2022-12-18T01:07:20Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Accurate RGB-D Salient Object Detection via Collaborative Learning [101.82654054191443]
RGB-D saliency detection shows impressive ability on some challenge scenarios.
We propose a novel collaborative learning framework where edge, depth and saliency are leveraged in a more efficient way.
arXiv Detail & Related papers (2020-07-23T04:33:36Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.